期刊文献+

石墨烯纳米片增强铝基复合材料的动态力学行为 被引量:8

Dynamic mechanical behavior of graphene nanoflakes reinforced aluminum matrix composites
下载PDF
导出
摘要 采用压制-烧结-热挤压工艺制备石墨烯纳米片(GNFs)增强铝基(Al)复合材料,并对其进行压缩性能测试。结果表明:GNFs/Al复合材料是应变率敏感材料,当应变率从10^(-3)s^(-1)提高至3×10~3s^(-1)时,复合材料的强度明显提高;而当应变率继续提高至5×10~3s^(-1)时,由于材料内部发生热软化,复合材料的强度反而表现出少许下降。动态压缩后复合材料中铝基体发生动态再结晶,且应变率越高,动态再结晶越显著;增强相GNFs则发生扭曲变形后仍保持完整结构且与基体间保持原子间结合。因此,GNFs/Al复合材料具有良好的动态压缩塑性。 Graphene nanoflakes (GNFs) reinforced aluminum matrix composites were prepared by compressing-sintering-hot extrusion process, and their compressive properties were tested. The results show that GNFs/Al composites are high strain rate sensitive materials. When the strain rate increases from 10 -3 s -1 to 3×10 3s -1 , the strength of the composites increases obviously. However, when the strain rate further increases to 5×10 3s -1 , the strength of the composites declines a little due to the internal thermal softening of the material. Dynamic recrystallization occurs in the matrix of the composites after dynamic compression, and the higher the strain rate is, the more significant the dynamic recrystallization is. At the same time, the enhanced phase GNFs remain intact and bonded with matrix in atom scale while undergo a distorted deformation. Therefore, the plasticity of graphene reinforced aluminum matrix composites under dynamic compression is excellent.
作者 赵双赞 燕绍九 陈翔 洪起虎 李秀辉 戴圣龙 ZHAO Shuang-zan;YAN Shao-jiu;CHEN Xiang;HONG Qi-hu;LI Xiu-hui;DAI Sheng-long(AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China)
出处 《材料工程》 EI CAS CSCD 北大核心 2019年第3期23-29,共7页 Journal of Materials Engineering
关键词 石墨烯纳米片 金属基复合材料 力学性能 应变率 动态再结晶 graphene nanoflakes metal matrix composites mechanical property strain rate dynamic recrystallization
  • 相关文献

参考文献2

二级参考文献17

  • 1史永胜,李雪红,宁青菊.石墨烯的制备及研究现状[J].电子元件与材料,2010,29(8):70-73. 被引量:15
  • 2NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5695):666-669.
  • 3LEE C,WEI X D,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
  • 4RAFIEE M A,RAFIEE J,WANG Z,et al.Enhanced mechanical properties of nanocomposites at low graphene content[J].ACS Nano,2009,3(12):3884-3890.
  • 5LIANG J J,HUANG Y,ZHANG L,et al.Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J].Adv Funct Mater,2009,19(14):2297-2302.
  • 6LIU J,YAN H X,JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites[J].Cerm Int,2013,39(6):6215-6221.
  • 7SUN C,SONG M,WANG Z W,et al.Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites[J].J Mater Eng Perform,2011,20(9):1606-1612.
  • 8SONG M,HE Y H,FANG S F.Yield stress of SiC reinforced aluminum alloy composites[J].J Mater Sci,2010,45(15):4097-4110.
  • 9TOPCU I,GULSOY H O,KADIOGLU N,et al.Processing and mechanical properties of B4 C reinforced Al matrix composites[J].J Alloys and Compd,2009,482(1-2):516-521.
  • 10PIERARD N,FONSECA A,COLOMER J F,et al,Ball milling effect on the structure of single-wall carbon nanotubes[J].Carbon,2004,42:1691-1697.

共引文献81

同被引文献66

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部