期刊文献+

基于线性矩阵不等式的一类广义系统观测器设计 被引量:3

Design of Observer for a Class of Generalized System Based on Linear Matrix Inequality
下载PDF
导出
摘要 状态反馈控制能有效进行系统控制,并使其正常工作。由于系统状态的测量具有一定的难度,因此需要设计状态观测器,利用重构的状态进行反馈。针对一类非线性部分满足Lipschitz条件的广义系统,讨论了系统全维观测器和降维观测器的设计问题。首先,根据系统的可观性,提出对广义系统进行两次变换,并将系统变换成易于设计观测器的形式。其次,利用系统的变换式对系统的两种观测器进行设计,通过Lyapunov稳定性理论给出观测器的状态估计误差系统稳定且误差收敛于零的充分条件。考虑到观测器增益矩阵求解的盲目性,利用Schur补引理给出了两种观测器存在的充分条件,并简化了增益矩阵的求解过程。最后,给出数值算例,求解出两种观测器的增益矩阵,证明了观测器设计的可行性。该研究为类似系统观测器的构建提供了设计方法。 State feedback control can effectively control the system and make it work normally.Because the measurement of system state is difficult,it is necessary to design a state observer and use the reconstructed state to feedback.For some of the generalized systems whose nonlinear part satisfies Lipschitz condition,the design of full dimensional observer and reduced dimensional observer is discussed.Firstly,according to the observability of the system,two transformations of the generalized system are proposed and the system is transformed into a form that is easy to design observers.Secondly,two kinds of observers of the system are designed by using the transformation of the system;through the Lyapunov stability theory,the sufficient condition that the state estimation error system of the observer is stable and the error converges to zero is given.Considering the blindness of solving the gain matrix of the observer,the Schur complement lemma is used to give the sufficient conditions for the existence of the two observers and simplify the solution process of the gain matrix.Finally,a numerical example is given to solve the gain matrix of the two observers,which proves the feasibility of the observer design.This study provides a design method for the construction of observers for similar systems.
作者 孙延修 潘斌 SUN Yanxiu;PAN Bin(Basic Course Department,Shenyang Institute of Technology,Fushun 113122,China;College of Science,Liaoning Shihua University,Fushun 113001,China)
出处 《自动化仪表》 CAS 2019年第2期8-10,14,共4页 Process Automation Instrumentation
基金 国家自然科学基金资助项目(61602228 61572290)
关键词 非线性系统 广义系统 观测器 线性矩阵不等式 稳定性 增益矩阵 Nonlinear system Generalized system Observer Linear matrix inequality Stability Gain matrix
  • 相关文献

参考文献4

二级参考文献29

  • 1朱芳来.类Lyapunov非线性系统降维观测器设计[J].控制理论与应用,2004,21(4):607-610. 被引量:8
  • 2Kalman R E. On a new approach to filtering and prediction problems[J]. Transactions of the ASME-Journal of Basic Engineering, 1960, 82(Series D): 35-45.
  • 3Luenberger D G. An introduction to observers[J]. IEEE Transactions on Automatic Control, 1971, 16(6): 596-602.
  • 4Rajamani R. Observers for Lipschitz nonlinear systems[J]. IEEE Transactions on Automatic Control, 1998, 43(3): 397- 401.
  • 5Pagilla P R, Zhu Y L. Controller and observer design for Lipschitz nonlinear systems[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2004: 2379-2384.
  • 6Pertew A M, Marquez H J, Zhao Q. Design of unknown input observers for Lipschitz nonlinear systems[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2006: 4198-4203.
  • 7Chen W T, Mehrdad S. Unknown input observer design for a class of nonlinear systems: An LMI approach[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2006: 834- 838.
  • 8Zemouche A, Boutayeb M. Observer design for Lipschitz nonlinear systems: The discrete-time case[J]. IEEE Transactions on Circuits and Systems, 2006, 53(8): 777-781.
  • 9Abbaszadeh M, Marquez H J. A robust observer design method for continuous-time Lipschitz nonlinear systems[C]//45th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE, 2006: 3795-3799.
  • 10Liu J, Lu J B, Dou X H, et al. State observer design and application for Lipschitz nonlinear systems[C]//IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Piscataway, NJ, USA: IEEE, 2008: 213-217.

共引文献25

同被引文献13

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部