期刊文献+

一种基于自适应核字典学习的SAR目标识别方法 被引量:1

SAR target recognition methed based on adaptive kernel dictionary learning
下载PDF
导出
摘要 提出一种基于自适应核字典学习的合成孔径雷达(synthetic aperture radar,SAR)目标识别方法.该方法首先将SAR图像的特征信息通过核函数映射到高维度的核空间中并进行字典学习;然后根据更新后的字典动态计算稀疏度;最后依据最小重构误差准则实现SAR目标识别.在公开数据集MSTAR上的仿真实验结果表明,该方法提取到的特征信息可分度高,对SAR目标的识别具有较好的性能. A synthetic aperture radar (SAR) target recognition method based on adaptive kernel dictionary learning is proposed in order to enhance the ability of sparse representation to extract non-linear feature information. Firstly, the SAR image feature information is mapped into a high-dimensional kernel space through a kernel function, and then the dictionary is learned in the high-dimensional kernel space. Next, the sparsity is dynamically calculated according to the information of each dictionary update. Finally, the SAR target recognition is achieved by minimizing the reconstruction error. The simulation results on MSTAR data sets show that the feature information extracted by this method can be highly indexed and has better performance on SAR target recognition.
作者 王彩云 黄盼盼 胡允侃 WANG Caiyun;HUANG Panpan;HU Yunkan(College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
出处 《电波科学学报》 EI CSCD 北大核心 2019年第1期60-64,共5页 Chinese Journal of Radio Science
基金 国家自然基金青年科学基金(61301211) 江苏省研究生教育教学改革课题(JGZZ17_008)
关键词 SAR图像 目标识别 自适应核字典学习 核稀疏 最小重构误差 SAR image target recognition adaptive kernel dictionary learning(AKDL) sparsity minimum reconstruction error
  • 相关文献

参考文献5

二级参考文献33

  • 1杨辉华,王行愚,王勇,高海华.正则化最小二乘分类的AlignLoo模型选择方法[J].控制与决策,2006,21(1):7-12. 被引量:1
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3B SchSlkopf, A Smola, K R Miiller, Nonliilear component analysis as a kernel eigenvalue problem, Neural Computation, 1998, 10(5), 1299-1319.
  • 4V N Vapnik, Statistical learning theory, AT&T Research, London University, 1998.
  • 5E R Keydel, S W Lee, JT. Moore, MSTAR extended operating conditions, A Tutorial, SPIE,1996, 2757(3), 228-242.
  • 6Qun Zhao, DongXin Xu, J C Principe, Pose estimation of SAR automatic target recognition,Proceedings of hnage Understanding Workshop, Monterey, CA., 1998, 11,827-832.
  • 7T Ross, S Worrell,V Velten, J Mossing, M Bryant, Standard SAR ATR evaluation experiment using the MSTAR public release data set, SPIE, 1998, 3370(4), 566-573.
  • 8Qun Zhao, J C Principe, Support vector machine for SAR automatic target recognition, IEEE Trans on Aerospace and Electronic Systems, 2001, 37(2), 643-654.
  • 9方红,章权兵,韦穗.基于亚高斯随机投影的图像重建方法[J].计算机研究与发展,2008,45(8):1402-1407. 被引量:33
  • 10孙玉宝,肖亮,韦志辉,邵文泽.基于Gabor感知多成份字典的图像稀疏表示算法研究[J].自动化学报,2008,34(11):1379-1387. 被引量:43

共引文献150

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部