期刊文献+

利用二进制特征描述符的改进SIFT影像匹配算法 被引量:3

An Improved SIFT Algorithm Based on Binary Feature Descriptor
下载PDF
导出
摘要 针对SIFT算法在匹配过程中运行效率低的不足,结合BRIEF特征描述子,将SIFT算法的高维特征向量转换为二进制特征描述子,以提高匹配效率。特征匹配过程首先采用Hamming距离完成粗匹配,再采用最小距离筛选法结合PROSAC算法的双重检测对初步匹配的特征点去伪,获得精准的匹配点对。实验结果表明该算法较SIFT算法匹配精度平均提升30.6%,匹配效率平均提高4.06倍,具有较强的实时性以及可行性。 Aiming at the defect that SIFT algorithm is inefficient in matching process,the algorithm is improved combined with BRIEF descriptor,and the high-dimensional feature vector of SIFT algorithm is converted into a binary feature descriptor to improve matching efficiency.The feature matching process first uses Hamming distance to complete coarse matching,then uses dual detection of the minimum distance method combined with PROSAC algorithm to eliminate the false matching points in preliminary matching to improve matching accuracy.Experimental results show that the algorithm improves matching accuracy by 30.6%and improves matching efficiency by 4.06 times compared with SIFT algorithm.The algorithm can meet the needs of real-time application.
作者 于翔舟 王慧 李烁 杨乐 闸旋 YU Xiangzhou;WANG Hui;LI Shuo;YANG Le;ZHA Xuan(Institute of Surveying and Mapping,Information Engineering University,Zhengzhou 450001,China;61618 TroopsjBeijing 100094,China;Naval Institute of Hydrographic Surveying and Charting,Tianjin 300061,China)
出处 《海洋测绘》 CSCD 2019年第1期39-43,共5页 Hydrographic Surveying and Charting
基金 国家自然科学基金(41571432)
关键词 SIFT算法 特征匹配 二进制特征 双重检测 渐进采样模型 SIFT algorithm features matching binary feature dual detection progressive sample consensus
  • 相关文献

参考文献3

二级参考文献67

  • 1岳思聪,王庆,赵荣椿.Robust Wide Baseline Point Matching Based on Scale Invariant Feature Descriptor[J].Chinese Journal of Aeronautics,2009,22(1):70-74. 被引量:6
  • 2汪华琴,谈国新,钱小红,朱海燕.一种基于曲率尺度空间的自适应角点检测方法[J].计算技术与自动化,2007,26(2):123-127. 被引量:10
  • 3王永明,王贵锦.图像局部不变特征与描述[M].北京:国防工业出版社,2010:53-56.
  • 4仇德元.GPGPU编程技术[M].北京:机械工业出版社,2011:19-20.
  • 5ZITOV:, B, FLISSER J, Image registration methods: A survey [ J ]. Image and Vision Computing,2003,21 ( 11 ) : 977-1000.
  • 6RATrARANGSI A, CHIN R T. Scale-based detection of comers of planar Curves [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1992, 14 4 ): 430 -449.
  • 7DAVID G L. Distinctive image features from seale-invari- ant keypoints [ J ]. International Journal of Computer Vi- sion,2004,60 (2) :91-110.
  • 8FARZIN M. Enhancing the curvature scale space comer detector [ C ]. Proc. Seandinnavian Conf. on Image Analysis, Bergen, Norway ,2001 : 145-152.
  • 9FARZIN M,RIKU S. Robust image corner detection through curvature scale space [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998,20(12) : 1376-1381.
  • 10JOHNSON A E, HEBERT M. Recognizing objects by matching oriented points [ C ]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Puerto Rico, 1997 : 684-689.

共引文献86

同被引文献40

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部