期刊文献+

PLA/Lignin-g-polyester生物基复合材料的制备及聚酯链段结构对性能的影响研究 被引量:8

Preparation of Biorenewable PLA/Lignin-g-polyester Composites and the Effects of Lignin-g-polyester Structures on Composite Properties
原文传递
导出
摘要 利用木质素开环δ-戊内酯(DVL)与L-丙交酯(L-LA)制备木质素表面接枝PDVL与PLLA链段,通过改变制备方法,制备lignin-g-PDVL-ran-PLLA、lignin-g-PDVL-b-PLLA 2种序列结构不同的木质素接枝聚合物(lignin-g-polyester).进而将lignin-g-polyester与PLA溶液复合后,采用溶液挥发成膜法制备一系列不同比例、不同序列链段的聚乳酸/木质素接枝聚合物复合材料(PLA/lignin-g-polyester).通过傅里叶红外光谱(FTIR)、核磁共振氢谱(1H-NMR)确定其结构;示差扫描量热仪(DSC)、场发射电子扫描显微镜(FE-SEM)等检测复合材料的热学性能及其内部形貌. FE-SEM的结果表明lignin-g-polyester在基材中以粒子形式均匀分散,与PLA基材相容性提高. DSC结果表明lignin-g-polyester能促进PLA的结晶;且无规的lignin-g-PDVL-ran-PLLA比具有规整嵌段结构的lignin-g-PDVL-b-PLLA更有利于促进PLA的结晶行为;同时Lignin-g-polyester改善了PLA复合材料的力学性能,且含有lignin-g-PDVL-b-PLLA比lignin-g-PDVL-ran-PLLA更能提高聚合材料的强度与韧性.复合材料拉伸过程所形成的空穴与褶皱是复合材料韧性提高的关键成因.此外,所制的PLA/lignin-g-polyester复合材料具有较优的紫外屏蔽性能. Lignin a commonly used modifier for bio-based PLA materials due to its good biodegradability,structural stability, and the nature of biomacromolecule. However, the poor compatibility between neat lignin and PLA matrix compromises greatly its further application. To this end, lignin-g-polyester with two different molecular structures, i.e. lignin-g-PDVL-ran-PLLA and lignin-g-PDVL-b-PLLA, were specially designed for compatibility improvement and successfully synthesized via ring-opening polymerization with δ-valerolactone (DVL) and L-lactone (L-LA). PDVL as a soft component could reduce the brittleness of PLA with its long polymer chains while L-LA would enhance the compatibility between lignin nanofillers and PLA matrix due to the structural similarity with PLA. Lignin-g-polyester fillers with various segment structures were prepared by tuning the monomer ratio, and a series of PLA/lignin-g-polyester composites with different filler contents were further fabricated via the solution casting method. Structures of lignin-g-polyester were characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H-NMR), while the uniform dispersion of lignin-g-polyester fillers in PLA composites was verified by field emission scanning electron microscopy (FESEM). Differential scanning calorimetry (DSC) was utilized to study the thermal properties and crystallization behaviors of as-fabricated composites, which indicated a boosted crystallization with improved crystallinity with the addition of nanofillers. Furthermore, lignin-g-PDVL-ran-PLLA outperformed lignin-g-PDVL-b-PLLA in terms of the facilitation effect. Mechanical testing showed that PLA/lignin-g-polyester composites possessed better mechanical properties than neat PLA did, which could result from the multiple effects induced by holes and wrinkles that formed between lignin-g-polyester nanofillers and PLA matrix during the stretching process. In contrast to DSC results, the mechanical properties of PLA/lignin-g-PDVL-b-PLLA composites were much better than those of PLA/lignin-g-PDVL-ran-PLLA composites. In addition, the UV-Vis transmission spectroscopy suggested that lignin-g-polyester could endow the composites with an excellent UV-shielding property.
作者 梁孝林 闻杰 杨雯迪 刘文毅 施冬健 陈明清 Xiao-lin Liang;Jie Wen;Wen-di Yang;Wen-yi Liu;Dong-jian Shi;Ming-qing Chen(Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122)
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2019年第2期147-159,I0004,共14页 Acta Polymerica Sinica
基金 国家轻工技术与工程一流学科自主课题(项目号2018-19) 江苏省研究生科研与实践创新计划项目(项目号SJCX18_0622)资助
关键词 聚乳酸基复合材料 接枝结构 木质素 δ-戊内酯 L-丙交酯 Poly(lactic acid)-based composite Sequential structure Lignin δ-Valerolactone L-lactone
  • 相关文献

参考文献2

二级参考文献168

  • 1蒋剑春.生物质能源转化技术与应用(Ⅰ)[J].生物质化学工程,2007,41(3):59-65. 被引量:83
  • 2司徒粤,胡剑峰,黄洪,傅和青.Synthesis, Properties and Application of a Novel Epoxidized Soybean Oil-toughened Phenolic Resin[J].Chinese Journal of Chemical Engineering,2007,15(3):418-423. 被引量:8
  • 3王久臣,戴林,田宜水,秦世平.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282. 被引量:249
  • 4官巧燕,廖福霖,罗栋.国内外生物质能发展综述[J].农机化研究,2007,29(11):20-24. 被引量:31
  • 5Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites fromrenewable resources: opportunities and challenges in the greenmaterials world [J]. Journal of Polymers and the Environment, 2002,10(11):19-26.
  • 6Carole T M, Pellegrino J, Paster M D. Opportunities in the industrialbiobased products industry [J]. Applied Biochemistry andBiotechnology, 2004, 115(4):871-886.
  • 7Sim?es C L, Viana J C, Cunha A M. Mechanical properties ofpoly(ε-caprolactone) and poly(lactic acid) blends [J]. Journal ofApplied Polymer Science, 2009, 112(1):345-352.
  • 8Ljungberg N, Wesslén B. Preparation and properties of plasticizedpoly(lactic acid) films [J]. Biomacromolecules, 2005, 6(3):1789-1796.
  • 9Ljungberg N, Wesslén B. Tributyl citrate oligomers as plasticizers forpoly(lactic acid): thermo-mechanical film properties and aging [J].Polymer, 2003, 44(25):7679-7688.
  • 10Ljungberg N, Wesslén B. The effects of plasticizers on the dynamicmechanical and thermal properties of poly(lactic acid) [J]. Journal ofApplied Polymer Science, 2002, 86(5):1227-1234.

共引文献37

同被引文献28

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部