期刊文献+

基于宽度学习方法的多模态信息融合 被引量:19

Multi-modal information fusion based on broad learning method
下载PDF
导出
摘要 多模态机器学习通过有效学习各个模态的丰富特征来解决不同模态数据的融合问题。考虑到模态间的差异性,基于宽度学习方法提出了一个能够学习和融合两种模态特征的框架,首先利用宽度学习方法分别提取不同模态的抽象特征,然后将高维特征表示在同一个特征空间进行相关性学习,并通过非线性融合得到最后的特征表达,输入分类器进行目标识别。相关实验建立在康奈尔大学抓取数据集和华盛顿大学RGB-D数据集上,实验结果验证了相比于传统的融合方法,所提出的方法具有更好的稳定性和快速性。 Multi-modal machine learning solves the fusion problem that arises in data with different modalites by effectively learning their rich characteristics.Considering the differences between various modalities,we propose a framework that can learn and fuse two kinds of modal characteristics based on the broad learning method.This method first extracts different abstract characteristics,then represents the high-dimension features in the same space to determine their correlation.We obtain a final representation of these characteristics by nonlinear fusion and inputs these characteristics into a classifier for target recognition.Relevant experiments are conducted on the Cornell Grasping Dataset and the Washington RGB-D Object Dataset,and our experimental results confirm that,compared with traditional fusion methods,the proposed algorithm has greater stability and rapidity.
作者 贾晨 刘华平 续欣莹 孙富春 JIA Chen;LIU Huaping;XU Xinying;SUN Fuchun(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030600,China;Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China;State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing 100084,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第1期150-157,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61673238) 国家高技术研究发展计划课题(2015AA042306) 山西省回国留学人员科研资助项目(2015-045 2016-044)
关键词 宽度学习方法 多模态融合 相关性分析 特征提取 非线性变换 目标识别 神经网络 RGB-D图像分类 broad learning method multi-modal fusion correlation analysis feature extraction nonlinear transformation object recognition neural networks RGB-D images classification
  • 相关文献

参考文献10

二级参考文献55

  • 1李瑞峰,贾建军.一种复杂背景下的手势提取方法[J].华中科技大学学报(自然科学版),2008,36(S1):186-188. 被引量:6
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 4孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 5张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划[J].哈尔滨工业大学学报,2006,38(8):1306-1309. 被引量:83
  • 6ZHU Weiyu, TOKLU C, LIOU S P. Automatic news video segmentation and categorization based on closed-captioned text[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Tokyo, Japan, 2001: 829-832.
  • 7BREZEALE D, COOK D J. Using closed captions and visu- al features to classify movies by genre [ C ]//Poster Session of the Seventh International Workshop on Multimedia Data Mining. Philadelphia, Pennsylvania, USA, 2006.
  • 8SCHMIEDEKE S, KELM P, SIKORA T. TUB @ MediaE- val 2011 genre tagging task : prediction using bag-of-( visu- al)-words approaches [ C]//Working Notes Proceedings of the MediaEval 2011 Workshop. Pisa, Italy, 2011: 1-2.
  • 9LAW-TO J, CHEN Li, JOLY A, et al. Video copy detec- tion : a comparative study[ C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval. New York, NY, USA, 2007: 371-375.
  • 10WU Xiao, HAUPTMANN A G, NGO C W. Practical elimi- nation of near-duplicates from web video search [ C ]//Pro- ceedings of the 15th ACM International Conference on Mul- timedia. New York, NY, USA, 2007: 215-227.

共引文献99

同被引文献152

引证文献19

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部