期刊文献+

融合语义与语法信息的中文评价对象提取 被引量:4

Chinese opinion target extraction based on fusion of semantic and syntactic information
下载PDF
导出
摘要 鉴于常规的序列化标注方法提取中文评价对象准确率低,存在忽略中文语义与语法信息的缺陷,提出了融合语义与语法信息的中文评价对象提取模型。该模型在原始字向量的基础上通过优化字符含义策略强化语义特征,弥补忽略的字符与词语的内部信息;并通过词性序列标注,对句子的词性信息进行表征,深化输入的语法特征。网络训练使用双向长短期记忆网络并用条件随机场克服标注标签的偏差,提高了提取准确率。该模型在BDCI2017数据集上进行验证,与未融入语义和语法的提取模型相比,中文主题词与情感词提取准确率分别提高了2.1%与1.68%,联合提取的准确率为77.16%,具备良好的中文评价对象提取效果。 The regular method of Chinese opinion target extraction has poor accuracy,and it ignores Chinese semantics and syntactic information.Therefore,a Chinese opinion target extraction model that combines semantic and syntactic information has been proposed.On the basis of the original word vector,the model strengthens the semantic features by optimizing the character meaning strategy,so as to make up for the internal information between the ignored characters and words,and through part-of-speech sequence annotation,the word-of-speech information of the sentence is characterized,and it represents the input syntactic information in depth.Through the bidirectional long short-term memory and the conditional random field,the deviation of the labeled label is avoided,improving the extraction accuracy.The model was validated on the BDCI2017 dataset.When compared with a unincorporated semantics and grammar extraction model,the accuracy of Chinese keyword and sentiment extraction increased by 2.1% and 1.68%,respectively.The accuracy of joint extraction was 77.16%,indicating a good effect on Chinese opinion target extraction.
作者 周浩 王莉 ZHOU Hao;WANG Li(College of Information and Computer Science,Taiyuan University of Technology,Jinzhong 030600,China;College of Big Data,Taiyuan University of Technology,Jinzhong 030600,China)
出处 《智能系统学报》 CSCD 北大核心 2019年第1期171-178,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61872260) 山西省重点研发计划国际合作项目(201703D421013)
关键词 中文评价对象 语义 语法 序列标注 双向长短期记忆网络 条件随机场 提取模型 Chinese opinion target semantic syntactic sequence labeling bidirectional long short-term memory conditional random field extraction model
  • 相关文献

参考文献3

二级参考文献28

  • 1丁晟春,李岳盟,甘利人.基于顶层本体的领域本体综合构建方法研究[J].情报理论与实践,2007,30(2):236-240. 被引量:45
  • 2Zhang L, Liu B, Lim S H, et al. Extracting and Ranking Product Features in Opinion Documents [C]. In: Proceedings of the 23rd International Conference on Computational Lingusitics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 1462-1470.
  • 3Jin W, Ho H H, Srihari R K. A Novel Lexicalized HMM-based Learning Framework for Web Opinion Mining [C]. In: Proceedings of the 26th Annual International Conference on Machine Learning (ICML), Montreal, Canada. New York, NY, USA: ACM, 2009: 465-472.
  • 4Li F T, Han C, Huang M L, et al. Structure-aware Review Mining and Summarization [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics (COLING), Beijing, China. Stroudsburg, PA, USA: ACL, 2010: 653-661.
  • 5Wu Y B, Zhang Q, Huang X J, et al. Phrase Dependency Parsing tbr Opinion Mining [C]. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), Singapore. Morristown, N J, USA: ACL, 2009: 1533-1541.
  • 6Titov 1, McDonald R. Modeling Online Reviews with Multi-grain Topic Models [C]. In: Proceedings of the 17th International Conference on World Wide Web (WWW), Beijing, China. New York, NY, USA: ACM, 2008:111-120.
  • 7Zhao W X, Jiang J, Yan H F, et al. Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid [C]. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), Massachusetts, USA. Stroudsburg, PA, USA: ACL, 2010: 56-65.
  • 8Hu M Q, Liu B. Mining and Summarizing Customer Reviews[C]. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, USA. New York, NY, USA: ACM, 2004: 168-177.
  • 9Aravindan S, Ekbal A. Feature Extraction and Opinion Mining in Online Product Reviews [C]. In: Proceedings of the 2014 International Conference on Information Technology (ICIT), Bhubaneswar, India. New York, NY, USA: IEEE, 2014: 94-99.
  • 10Qiu G, Liu B, Bu J J, et al. Opinion Word Expansion and Target Extraction Through Double Propagation [J]. Computational Linguistics, 20 I1, 37(1 ): 9-27.

共引文献27

同被引文献31

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部