期刊文献+

本原元只含不高于六阶若当块矩阵群的幂单性 被引量:4

The Unipotency of Linear Groups Generated by Matrices with Primitive Elements Contain no more than Six Jorden Blocks
下载PDF
导出
摘要 针对两个幂单矩阵生成的矩阵是否幂单的问题,先利用矩阵对数工具得到了自由群生成元的新的组合性质。从这些新的组合性质出发,证明了由一个若当块不高于二阶和若当块不高于五阶矩阵生成的群,在本原元若当块不高于六阶的情况下,当本原元素均幂单时,生成的群是幂单群。这样就可以得出线性表示像满足同样条件的自由群也是幂单群。 In order to solve the problem of whether the matrices generated by two unipotent matrices are unipotency,a new combinatorial property of generators of free groups is obtained by using the matrix logarithmic tool.From the point of the combination of these new properties,it is proved that a Jordan block is not higher than two and if the order when the block is not higher than five order matrix generated group,when the block is not higher than six order,the primitive element is unipotency,the group generated is unipotent group.
作者 杨新松 马畅 YANG Xin-song;MA Chang(Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2019年第1期124-131,共8页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(11871181)
关键词 幂单群 本原元 自由群 群表示 unipotent group primitive element free group group representation
  • 相关文献

参考文献3

二级参考文献24

  • 1白瑞蒲,孟道骥.两类幂零的n-Lie代数[J].数学学报(中文版),2005,48(5):909-918. 被引量:5
  • 2VLADIMIR P P,ALEXANDER P.New Combinatorial Properties of Linear Groups[J].Journal of Algebra,2001,235:399-415.
  • 3САМСОНОВ Ю. Б. Унипотентность образа представления F2(x,y) матрицами из, GL(n,c) (n=2,3,4) при условии отображения образующих и примитивных элементов в унипотентные матрицы [ J ] . Докл. Нац. акад. наук Беларуси, 2001(6): 28 - 31.
  • 4СИНЬСУН ЯН. Линейные редставления свободные групп [М]. Минск:РИВШ, 2011:21-61.
  • 5SANOV I N. Character of represent of free group [ J ]. Report, As, USSR, 1947, 57(7): 657-659.
  • 6PLATONOV V P, POTAPCHIK A E. New Combinatorial Proper- ties of Linear Group Algebra [ M ]. Waterloo: Journal of Algebra, 2001 : 3 -451.
  • 7DAVHENY O I, YANG Xinsong. Unipotency of Image of F( x, y) in GL(7, C) with the Condition that Each Primitive Element is U- nipotent [ J ]. Journal of Belorussia National University, 2011, 1 (1) : 57 -62.
  • 8YANG Xinsong. Linear Represent of Free Group [ M ]. Belorus- sian National Education Press: Minsk, 2011:62.
  • 9MAGNUS W, KARRAS A, SOLITAR D. Combinatorial Group Theory[ M ]. New York, 1976:235.
  • 10WANG Y M. Finite Groups with Some Subgroups of Sylow Sub- groups c-Supplemented [ J ]. J. Algebra, 2000,224 ( 2 ) : 467 - 47g.

共引文献4

同被引文献5

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部