期刊文献+

一种针对El-Gamal数字签名生成的安全外包计算方案

A Secure Outsourcing Computation Scheme for El-Gamal Signature Generation
下载PDF
导出
摘要 云计算作为一种新型计算模式,满足了人们将计算能力作为一种资源的需求。云服务器可以为资源受限的用户提供计算能力、存储空间等多方面的支持。完全可信的云服务器在实际应用中非常少见,不受信任的云服务器可能会窃取用户隐私。文章提出一种针对El-Gamal数字签名生成的安全外包计算方案,在云服务器的协助下,资源受限的签名者可以高效生成El-Gamal签名,且保护签名者的隐私不被泄露。该方案还包含验证机制,使签名者可以验证云服务器返回结果的正确性。理论分析证明,该方案可以在保护签名者隐私的前提下帮助签名者提高签名生成效率。 As a new computing mode, cloud computing has realized people’s requirement of computing power as a resource. Cloud servers can provide resource-constrained clients with much support, including computing power and storage space. But fully trusted servers are rare in practice. Untrusted servers may steal the privacy of the clients. This paper presents a secure outsourcing scheme for El-Gamal signature generation, which makes resource-constrained signers could efficiently generate El-Gamal signature with the help of cloud servers. Meanwhile, our scheme also provides privacy protection of signers. Our scheme also includes verification mechanism, which allows signer to check the correctness of result returned by the cloud server. The security analysis proves that our proposed scheme can help signers to improve signature generation efficiency under the premise of protecting signers’ privacy.
作者 赵谱 崔巍 郝蓉 于佳 ZHAO Pu;CUI Wei;HAO Rong;YU Jia(College of Computer Science and Technology, Qingdao University, Qingdao Shandong 266071, China;Information Center of the Ministry of Science and Technology, Beijing 100862, China;State Key Laboratory of Information Security,Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China)
出处 《信息网络安全》 CSCD 北大核心 2019年第3期81-86,共6页 Netinfo Security
基金 国家自然科学基金[61572267 61272425] "十三五"国家密码发展基金[MMJJ20170118] 中国科学院信息工程研究所信息安全国家重点实验室开放课题[2016-MS-23 2017-MS-21]
关键词 安全外包计算 El-Gamal数字签名 云计算安全 secure outsourcing computation El-Gamal signature cloud computing security
  • 相关文献

参考文献5

二级参考文献46

  • 1赫尔 M.群论[M].裘光明,译.北京:科学出版社,1981:60.
  • 2Sun Microsystems, Inc. Building customer trust in cloud computing with transparent security. 2009. https://www.sun. com/offers/det ails/sun_transparency.xml.
  • 3Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing. Maryland, 2009. 169-178.
  • 4Gentry C. Toward basing fully homomorphic encryption on worst-case hardness. In: Proceedings of the 30th Annual Cryptology Conference. Santa Barbara, 2010. 116-137.
  • 5van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over integers, In: Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Riviera, 2010. 24-43.
  • 6Smart N P, Vercauteren F. Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Pro- ceedings of the 13th International Conference on Practice and Theory in Public Key Cryptography. Paris, 2010. 420-443.
  • 7Stehle D, Steinfeld R. Faster fully homomorphic encryption. In: Proceedings of the 16th International Conference on the Theory and Application of Cryptology and Information Security. Singapore, 2010. 377-394.
  • 8Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings. In: Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Riviera, 2010. 1-23.
  • 9Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption (standard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS). Palm Springs, 2011. 97-106.
  • 10Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Proceedings of the 31st Annual Cryptology Conference. Santa Barbara, 2011. 501-521.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部