摘要
在右删失数据下,研究了误差具有异方差结构的非参数回归模型,利用局部多项式方法构造了回归函数的加权局部复合分位数回归估计,并得到了该估计的渐近正态性结果,最后通过模拟,当误差为重尾分布时,该估计比局部多项式估计以及核估计表现得更好.
In this paper, the nonparametric regression model with heteroscedastic error is considered under right-cesored data. Based on the local polynomial method, a weighted local composite quantile regression estimator of regression function is constructed. Under appropriate assumptions, the asymptotic normality of the estimator is also established. The simulation studies show that the paper's estimators perform better than the local polynomial estimator and the kernel estimation when the error is the heavy tail distribution.
作者
王江峰
裘良华
张慧增
WANG Jiang-feng;QIU Liang-hua;ZHANG Hui-zeng(School of Statis. Math., Zhejiang Gongshang Univ., Hangzhou 310018, China;School of Qianjiang., Hangzhou Normal Univ., Hangzhou 310036, China;School of Science., Hangzhou Normal Univ., Hangzhou 310036, China)
出处
《高校应用数学学报(A辑)》
北大核心
2019年第1期11-24,共14页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家社科基金(16BTJ029)
关键词
右删失数据
复合分位数回归
回归函数
渐近正态性
right-cesored data
composite quantile regression
non-parametric regression
asymptotic normality