期刊文献+

一种正样本单分类框架下的高分辨率遥感影像建筑物变化检测算法 被引量:7

A new building change detection algorithm of high-resolution remote sensing image based on one-class classifier framework
下载PDF
导出
摘要 高分辨率遥感影像建筑物变化检测对于城市规划、城市执法等方面具有非常重要的意义。文中提出一种基于正样本单分类器学习框架下的建筑物变化检测算法。首先提取影像形态学建筑物指数特征(MBI),通过卡方变换将其与光谱特征进行融合;然后利用一种单分类器完成建筑物变化初始判定;最后利用改进的长宽比形状特征完成最终建筑物变化判定。通过与现有建筑物变化检测算法、传统的多分类器算法对比,本文算法精度有一定提升并具有更强的鲁棒性。 Building change detection algorithm of high-resolution remote sensing image is very useful on urban planning, urban law enforcement and so on. This paper proposes a building change detection algorithm based on a positive sample one-class classifier learning framework. Firstly, this paper extracts the feature index (MBI) of image morphological structure, which is combined with the spectral feature by chi-square transformation. Then, a single classifier is used to complete the initial decision of building change. Finally, the improved aspect ratio shape characteristics is used to complete determining the final building changes. Compared with the existing building change detection algorithm and the traditional multi-classifier algorithm, the accuracy of the algorithm is improved,which has stronger robustness.
作者 刘波 燕琴 刘恒飞 马磊 LIU Bo;YAN Qin;LIU Hengfei;MA Lei(School of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China;State Bureau of Surveying and Mapping,Beijing 100830, China;Heilongjiang Geomatics Center of NASG, Harbin 150081, China)
出处 《测绘工程》 CSCD 2019年第2期52-56,共5页 Engineering of Surveying and Mapping
关键词 正样本单分类器 高分辨率遥感影像 建筑物变化检测 positive sample one-class classifier high resolution remote sensing image building change detection
  • 相关文献

参考文献2

二级参考文献17

  • 1Malpica J A, Alonso M C. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2010 38(8): 853.
  • 2Leena Matikainen, Harri Kaartinen, Juha Hyypp. Classification Tree Based Building Detection From Laser Scanner and Aerial Image Data. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland: 282.
  • 3Leena Matikainen, Juha Hyypp, Eero Ahokas, et al. Remote Sensing, 2010, 2: 1217.
  • 4José A Malpicaa, María C Alonsoa, Francisco Papíb, et al. International Journal of Remote Sensing, 2013 34(5): 1652.
  • 5Liang-Chien Chena,Li-Jer Lin. Journal of Applied Remote Sensing,2010,4(1): 1.
  • 6Brozzone L, Prieto D F. Automatic Analysis of the Difference Image for Unsupervised Change Detec- tion[J]. IEEE Transaction on (;eoscience and Re mote Sensing, 2000, 38 (3):1 171 1 182.
  • 7Addabbo A D, Satalino G, Pasquariello G , et al. Three Different Unsupervised Methods for Change Detection= An Application[C]. Geoscience and Re- mote Sensing Symposium, Anchorage, 2004.
  • 8Farid M, Gabriele M, Sebastiano B S. Unsuper- vised Change Detection Methods for Remote Sensing Images [J]. OpticalEngineering , 2002, 41(12): 3 288-3 297.
  • 9Bazi Y, Bruzzone L, Melgani F. Image Threshol- ding Based on the EM Algorithm and the General ized Gaussian Distribution[J]. Pattern Recognition, 2007, 40(2) :619-634.
  • 10Haverkamp D, Tsatsoulis C. Information Fusion for Estimation of Summer MIZ Ice Concentration form SAR Imagery[J]. IEEE Trans Geoscience Re- mote Sensing, 1999, 37(3): 1 278-1 294.

共引文献16

同被引文献65

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部