期刊文献+

结合局部熵能量泛函与非凸正则项的图像分割 被引量:1

Energy Functional of Local Entropy Combined with Non-Convex Regularization for Image Segmentation
下载PDF
导出
摘要 为了克服灰度不均匀对图像分割的影响,结合CV模型的全局能量项和LBF模型的局部能量项,引入图像局部熵信息和非凸正则项,构造新的能量泛函,提出了结合局部熵的局部能量泛函与非凸正则项的图像分割算法。该算法首先采用CV模型中的全局能量泛函得到图像的大致演化轮廓;通过构建具有局部熵信息的局部能量泛函,实现对图像的精确分割。然后,利用非凸正则项作为图像演化过程中零水平集逼近目标的又一驱动力驱动曲线演化和边缘保护。该算法利用变分水平集方法将这一新构建的能量泛函进行最小化,通过迭代更新水平集函数,完成曲线演化。最后,对比实验表明,所提出的算法可以高效、准确地分割灰度不均匀图像。 To overcome the influence of intensity inhomogeneity on image segmentation,an image segmentation algorithm is proposed by energy functional of local entropy in combination with non-convex regularization,which combines global energy terms of CV model and local energy terms of LBF model,and local entropy information and nonconvex regularization are introduced to construct new energy functional.Firstly,global energy functional is employed to obtain coarse segmentation in CV model,which builds local energy functional based on local entropy information to obtain accurately segmentation.Secondly,non-convex regularization serves as another driving force in image evolution to drive curve evolution and preserve edge.This algorithm minimizes this newly constructed energy functional by using level set method and updates the level set function through iteration to complete the curve evolution.Finally,contrast experimental results show that the proposed method can efficiently and accurately segment intensity inhomogeneity image.
作者 韩明 王敬涛 孟军英 刘教民 HAN Ming;WANG Jingtao;MENG Junying;LIU Jiaomin(School of Computer Science and Engineering,Shijiazhuang University,Shijiazhuang 050035,China;The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,School of Information Science and Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第6期160-167,共8页 Computer Engineering and Applications
基金 教育部协同育人项目(No.201702185053) 河北省高等学校青年拔尖人才计划项目(No.BJ2017105) 河北省科技计划支撑项目(No.16222101D) 石家庄市重点研发项目(No.181230041A)
关键词 图像分割 局部熵 能量泛函 灰度不均匀 非凸正则项 image segmentation local entropy energy functional intensity inhomogeneity non-convex regularization
  • 相关文献

参考文献4

二级参考文献29

  • 1刘存良,潘振宽,郑永果,端金鸣,张峰.两种保持符号距离函数的水平集分割方法[J].吉林大学学报(工学版),2013,43(S1):115-119. 被引量:2
  • 2Shi Y and Karl W C. Real-time tracking using level sets[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 34-41.
  • 3Kiran Thapaliyaa, Jae-Young Pyuna, Chun-Su Parkb, et al.. Level set method with automatic selective local statistics for brain tumor segmentation in MR images[J]. Computerized Medical Imaging and Graphics, 2013, 37(1): 522-537.
  • 4Jiang Xin, Zhang Ren-jie, and Nie Sheng-dong. Image segmentation based on level set method[J]. Physics Procedia, 2012, 33(6): 840-845.
  • 5Vese L and Chan T. A multiphase level set frame work for image segmentation using the mumford and shah model[J]. Journal of Computer Vision, 2002, 50(3): 271-293.
  • 6Wang Hui and Huang Ting-zhu. An adaptive weighting parameter estimation between local and global intensity fitting energy for image segmentation[J]. Communication Nonlinear Science Numeral Simulation, 2014, 19(2): 3098-3105.
  • 7Li Chun-ming, Kao Chiu-Yen, Gore J C, et al.. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.
  • 8Mumford D and Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-585.
  • 9Ahmed D, Kamal H, and Moussa D. Fast multilevel thresholding for image segmentation through a multiphase level set method[J]. Signal Processing, 2013, 93(7): 139-153.
  • 10Wang L, Li C M, Sun Q S, et al.. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 520-531.

共引文献36

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部