期刊文献+

Hadoop平台下新型图像并行处理模型设计 被引量:3

New Design of Image Parallel Processing Model Based on Hadoop Platform
下载PDF
导出
摘要 Hadoop在处理海量小图像数据时,存在输入分片过多以及海量小图像存储问题。针对这些问题,不同于采用HIPI、SequenceFile等方法,提出了一个新型图像并行处理模型。利用Hadoop适合处理纯文本数据的特性,本模型使用存储了图像路径的文本文件替换图像数据作为输入,不需要设计图像数据类型。在Map阶段直接完成图像的读取、处理、存储过程。为了简化图像处理算法,将OpenCV和Map函数结合并设计了对应的存储方法,实现小图像文件的存储。实验表明,在Hadoop分布式系统平台下,模型不论在小数据量还是在大数据量的测试数据环境中,都具有良好的吞吐性能和稳定性。 While dealing with huge amount of small image data,Hadoop has the problems of managing the excessive fragmentation of the inputs and saving the rapid growth of small image files.In view of solving these problems,the solution of a new mass small image parallel processing model is proposed and implemented,and is different from the methods such as HIPI and SequenceFile.For Hadoop is suitable for the text-only data processing,the image data is replaced by the text file that stores the image path as input,and the model does not need to design image data types.The functions such as image reading,image processing,image storage are completed in the Map stage of Hadoop.And to simplify the image processing algorithms,the OpenCV functions are combined with the Map function and the corresponding storage method is designed to accommodate the storage of small image files.Experimental results show that,the model has good performance on throughput test and good stability wherever the test data is the small amount of data or large amount of data in Apache Hadoop system.
作者 刘军 李威 吴梦婷 陈起凤 LIU Jun;LI Wei;WU Mengting;CHEN Qifeng(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第6期186-190,共5页 Computer Engineering and Applications
基金 湖北省智能机器人重点实验室开放基金(No.HBIR 201608) 武汉工程大学研究生创新基金(No.CX2016063)
关键词 HADOOP 并行计算框架(MapReduce) 图像处理 OPENCV Hadoop MapReduce image processing OpenCV
  • 相关文献

参考文献4

二级参考文献29

  • 1WHITET.Hadoop权威指南[M].2版.周敏奇,钱卫宁,金澈清,等译.北京:清华大学出版社,2011.
  • 2ApacheHadoop. What Is Apache Hadoop?[EB/OL]. (2011- 12-27)[2012-2-17]. http : //hadoop.apache.org/.
  • 3刘刚,侯宾,翟周伟.Hadoop开源云计算平台[M].北京:北京邮电大学出版社,2011.
  • 4DEAN J, GHEMAWAT S. MapReduce: Simplified Data Processing onLarge Clusters[C]. San Francisco CA: [s.n.], 2004.
  • 5GHEMAWAT S, GOBIOFF H, LEUNG S. The Google File System[C]. New York : ACM, 2003.
  • 6[美]WHITET.Hadoop权威指南[M].周敏奇,王晓玲,金澈清,等,译.第2版.北京:清华大学出版社,2011.
  • 7陆嘉恒.Hadoop实战[M].2版.北京:机械工业出版社,2012.
  • 8郑欣杰,朱程荣,熊齐邦.基于MapReduce的分布式光线跟踪的设计与实现[J].计算机工程,2007,33(22):83-85. 被引量:7
  • 9JEFFREY DEAN,SANJAY GHEMAWAT. Map reduce:simplified data processing on large clusters[J].Communications of the ACM,2008,(51).
  • 10TOM WHITE. Hadoop the definitive guide[M].O Reilly| Yahoo!PRESS,2009.

共引文献28

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部