摘要
针对升力式再入飞行器大动压下横侧向快速、高精度RCS姿态控制问题,利用再入飞行器在大攻角状态下横侧向耦合明显,偏航通道对倾侧角的控制更高效、抗干扰能力更强的特点,提出了同时控制滚转和偏航跟踪倾侧角指令的策略,设计了以倾侧角控制为外回路,以滚转和偏航角速率为内回路的双回路动态逆控制器。通过滚转角速率控制器的改进设计保证了侧滑角在不受控状态下的收敛性,并分析了控制参数选择对侧滑角收敛特性的影响。将该控制器与采用常规解耦方式设计的控制器进行了仿真对比,结果表明,该方法有效解决了采用常规RCS控制方法时倾侧角在大动压再入条件下响应慢、抗干扰能力差的问题,提高了RCS在大动压下的控制能力。
For the existence of aerodynamic coupling and big turbulence of reentry vehicle in large aerodynamic flight status, Conventional method for RCS controller designing is difficult to track the bank angle command quickly and accurately. To solve the problem, according to the feature that the lateral/directional coupling is significant and the yaw channel is more effective and stronger to turbulence when tracking the bank angle, a strategy is proposed by using the roll and yaw channel simultaneously to control the bank angle dynamic. Double loop dynamic inversion controller is designed in which the bank angle loop conduct as outer loop and the roll and yaw angle rate loop as inner loop. The convergence of sideslip angle is guaranteed by improving the design of roll angle rate controller and the influence of the controller parameters to converge mode is analyzed. PWPF modulator is applied to convert command moment into pulse signals. Numerical simulation is carried out to verify the benefits of the proposed control method, the results shows that the present method solved the problem that RCS controller designed in conventional manner, and improve control ability of RCS in large aerodynamic condition.
作者
樊朋飞
凡永华
闫杰
FAN Pengfei;FAN Yonghua;YAN Jie(School of Astronautics, Northwestern Polytechnical University, Xi′an 710072, China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2019年第1期21-27,共7页
Journal of Northwestern Polytechnical University
关键词
再入飞行器
横侧向控制
反作用控制系统
动态逆
reentry vehicle
lateral flight control
reaction control system
dynamic inversion