摘要
针对磨削金刚石砂轮磨损状态声发射信号小波分析中存在的问题,根据工程陶瓷部分稳定氧化锆磨削过程中声发射信号非线性非平稳性的特点,采用经验模态分解方法将磨削声发射信号分解为多个平稳的固有模态函数之和,并提取其有效值、方差和能量系数等特征值.在磨削金刚石砂轮从轻度磨损状态转变为严重磨损状态时,固有模态函数的有效值(IMFrms)和方差(IMFvar)增大,而能量系数(IMFpe)发生明显的变化;将其做为最小二乘支持向量机的输入参数,对金刚石砂轮的轻度磨损状态和严重磨损状态成功地进行了智能监测.
In view of the existing problem in the wavelet analysis of acoustic emission signals in wear state of diamond grinding wheel, because engineering ceramics partially stabilized zirconia grinding acoustic emission signals have nonlinear and nonstationary characteristics, using empirical mode decomposition method the acoustic emission signals were decomposed into several stationary intrinsic mode functions and then the root mean squares, variances and energy coefficients were extracted. When the wear state of diamond grinding wheel changes from mild wear to severe wear, the root mean squares(IMFrms) and variances(IMFvar) of the intrinsic mode function increase, and the energy coefficients(IMFpe) change significantly. As the input parameter of the least squares support vector machine, the wear state of diamond grinding wheel was successfully monitored.
作者
郭力
霍可可
郭君涛
GUO Li;HUO Keke;GUO Juntao(College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第2期58-66,共9页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(51475157)~~
关键词
氧化锆磨削
金刚石砂轮磨损状态监测
声发射
经验模态分解
最小二乘支持向量机
partially stabilized zirconia grinding
diamond grinding wheel wear state monitoring
acoustic emission
empirical mode decomposition
least squares support vector machine