期刊文献+

基于改进型泊松-玻尔兹曼方程的电渗流建模与分析

Analysis and Modeling of Electro-osmosis Based on the Modified Poisson-Boltzmann Equation
下载PDF
导出
摘要 建立了双电层的离子分布模型,基于经典Poisson-Boltzmann(PB)方程和改进型MPB(modifiedPoisson Boltzmann)方程对不同浓度和激励电压的离子分布进行了理论研究.结果发现在电压高于0. 4 V,且自由离子浓度小于10-4mol/L时,双电层内部的扩散层厚度存在较大的误差.这直接导致了基于Debye长度模拟电渗流运动与实际观测不符,主要因为Debye-Hückel公式具有线性关系不适用于仿真高电压条件下的电渗流运动.因此借助非线性MPB方程求解扩散层厚度,更能精确得到正、负电极宽度为500μm,间距为25μm,在±1 V,500 Hz电信号产生的最大电渗流速度为1 034. 31μm/s. The ion distribution for different concentrations and applied voltage is studied by modeling the ion distribution in electric double layer(EDL)based on the Poisson-Boltzmann(PB)and modified Poisson-Boltzmann(MPB)equations.The results indicate that some errors exist in the thickness of diffusion in EDL if the applied voltage is more than 0.4 V and the ion concentration is less than 10-4 mol/L.The simulated electro-osmotic flow by using Debye length is not in agreement with the practical observation result mainly because the Debye-Hückel equation is of linear relationship and not compatible with the calculating electro-osmotic flow under higher voltage conditions.By use of the MPB equation with non-linear characteristics,the maximal electro-osmotic flow generated by two co-planar metal electrodes with the width of 500 μm and the gap of 25 μm is 1 034.31 μm/s at ±1 V potential with the frequency of 500 Hz.
作者 胡晟 吕江涛 司光远 HU Sheng;LYU Jiang-tao;SI Guang-yuan(School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第3期447-451,共5页 Journal of Northeastern University(Natural Science)
基金 河北省自然科学基金资助项目(F2017501059) 辽宁省博士启动基金资助项目(20170520325) 中央高校基本科研业务费专项资金资助项目(N172304033)
关键词 交流电渗流 双电层 PB方程 MPB方程 有限元法 AC electro-osmosis electric double layer(EDL) PB equation MPB equation finite element method
  • 相关文献

参考文献1

二级参考文献8

  • 1Whitesides G M. The origins and the future of microfluidics [J]. Nature, 2006,442(7101 ) :368 - 373.
  • 2Nguyen N T, Wereley S T. Fundamentals and applications of microfluidics[M]. Boston: Artech House, INC, 2006:255 - 256,303.
  • 3Bart S F, Tavrow L S, Mehregany M, et al. Microfabricated electrohydrodynamic pumps [ J ]. Sensors and Actuators A : Physical, 1990,21(1/2/3) : 193 - 197.
  • 4Jang J, Lee S S. Theoretical and experimental study of MHD ( magnetohydrodynamie ) micropump [ J ]. Sensors and Actuators A : Physical, 2000,80( 1 ) : 84 - 89.
  • 5Morf W E, Guenat O T, de Rcoij N F. Partial electroosmotic pumping in complex capillary systems: Part 1 : principles and general theoretical approach [ J ]. Sensors and Actuators B : Cheroical, 2001,72(3) : 266 - 272.
  • 6Xu Z R, Fang Z L. Composite poly(dimethylsiloxane)/glass mierofluidie system with an immobilized enzymatic particlebed reactor and sequential ssmple injection for chemiluminescence determinations [ J ]. Analytica Chimica Acta, 2004,507(1) : 129 - 135.
  • 7Juncker D, Schmid H, Drechsler U, et al. Autonomous microfluidic capillary system [ J ]. Analytical Chemistry, 2002,74(24) :6139 - 6144.
  • 8Du W B, Fang Q, He Q H, et al. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis syslem with gravily-driven flows [ J ]. Analytical Chemistry, 2005,77(5) : 1330 - 1337.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部