期刊文献+

带有Michaelis-Menten型收获项的Lotka-Volterra捕食-食饵模型的稳定性和Hopf分支 被引量:3

Stability and Hopf bifurcation of a Lotka-Volterra predator-prey model with Michaelis-Menten type harvesting term
下载PDF
导出
摘要 基于种群Lotka-Volterra捕食-食饵模型增长的假设,构建了一个带有食饵收获项的Lotka-Volterra模型.首先探讨了该模型平衡点的存在性和稳定性,然后讨论了一个正平衡点附近产生的Hopf分支,最后通过数值模拟验证了理论分析结果. Based on the assumption of Lotka-Volterra predator-prey model,a Lotka-Volterra model with prey harvesting is constructed in this paper.First,the existence and stability of the equilibrium points of the model are discussed,and then the Hopf bifurcation generated near a positive equilibrium point is discussed.Finally,the numerical simulation is given to verify the theoretical analysis.
作者 朱致兴 吴然超 刘彪 ZHU Zhi-xing;WU Ran-chao;LIU Biao(School of Mathematical Sciences,Anhui University,Hefei 230601,Anhui,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期25-34,共10页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11571016)
关键词 Lotka-Volterra捕食-食饵模型 收获项 稳定性 HOPF分支 Lotka-Volterra predator-prey model harvesting term stability Hopf bifurcation
  • 相关文献

参考文献1

二级参考文献10

  • 1宋新宇,肖燕妮,陈兰荪.具有时滞的生态-流行病模型的稳定性和Hopf分支[J].数学物理学报(A辑),2005,25(1):57-66. 被引量:27
  • 2原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 3Kermack W O, McKendrick A G. Contribution to the mathematical theory of epidemics. Proc Roy Soc, 1932, 138(1): 55-83
  • 4Cooke K L, York J A. Some equations modeling growth processes and gonorrhea epidemics. Math Biol, 1973, 16(1): 75-101
  • 5Busenberg S, Cooke K L. The effect of integral conditions in certain equations modeling epidemics and DoDulation growth. J Math Biol, 1980, 10(1): 13-32
  • 6Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size. Mathl Comput Modelling, 2002, 35:1235-1243
  • 7Li Jianquan, Ma Zhien, Zhou Yicang. Glbal analysis of sis epidemic model with a simple vaccination and multiple endemic equilibria. Acta Mathematica Scientia, 2006, 26B(1): 83-93
  • 8Cooke K L, van den Driessche P, Zou X. Interaction of maturation delay and nonlinear birth in population and epidemic models. J Math Biol, 1999, 39(2): 332-352
  • 9Anderson R M, May R M. Population biology of infectius diseases I. Nature, 1979, 280(5721): 361-367
  • 10Dietz K. Overall Population Patterns in the Transmission Cycle of Infection Disease Agents. In: Anderson R M, May R M. Population Biology of Infectious Diasease. Berlin: Springer, 1982. 87-102

共引文献17

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部