期刊文献+

Cu_2Sn(S,Se)_3薄膜的溶液法制备及其光电性能研究

Photoelectric properties of Cu_2Sn(S,Se)_3 films prepared by solution method
下载PDF
导出
摘要 采用低廉、简便及易于控制元素组成的溶液法在钠钙玻璃和钼玻璃基底上沉积Cu-Sn-S前驱体膜,随后在N_2保护下硒化获得到Cu_2Sn(S,Se)_3薄膜,并通过调控前驱薄膜的硒化退火温度,实现了对薄膜形貌、物相结构、电学及光学性能的有效调制.研究结果表明,适当的硒化退火温度,如480℃,可得到表面平整、结晶度高、晶粒致密和双层结构(上层大、下层小晶粒)的Cu_2Sn(S,Se)_3薄膜,其带隙为1.28 eV,载流子浓度可低至6.780×10^(17) cm^(-3),迁移率高达18.19 cm^2·V^(-1)·S^(-1),可用于薄膜太阳能电池的光吸收层. In this work,Cu-Sn-S precursor film was prepared on a soda lime glass and molybdenum glass substrate by solution method,and then a Cu2Sn(S,Se)3 film was obtained by selenization of the precursor under N 2 protection.The morphology,phase,optical and electrical properties of Cu2Sn(S,Se)3 films were effectively controlled by adjusting the annealing temperature of the precursor films.It is found that,under an appropriate annealing temperature of 480 ℃ in the selenization process, Cu2Sn(S,Se)3 film with double-layer structure show a flat surface,high crystallinity,dense grains and a direct band-gap of 1.28 eV.Furthermore,its carrier concentration can be reduced to 6.780×10 17 cm^-3 and the mobility can be as high as 18.19 cm^2 ·V^-1 ·S^-1 ,which is suitable for the optical absorption layer of thin-film solar cells.
作者 陈建彪 常乐 赵雲 李燕 王成伟 CHEN Jian-biao;CHANG Le;ZHAO Yun;LI Yan;WANG Cheng-wei(College of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China;Laboratory of Clean Energy Chemistry and Materials,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China)
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2019年第2期50-54,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11864035 11364036 11464041)
关键词 Cu2Sn(S Se)3薄膜 溶液法 硒化温度 Cu2Sn(S,Se)3 thin-film solution method selenization temperature
  • 相关文献

参考文献3

二级参考文献23

  • 1Marcano G,Rincon C,de Chalbaud L M,et al. [J], J Appl Phys, 2003,38 ( 15 ) : 1949-1955.
  • 2Marcano G,Bracho D B,Rincbn C,et al. [J]. J Appl Phys, 2000,88(822): 373743-373751.
  • 3Skoug E J,Cain J D,Morelli D T. [J]. J Alloys Compd, 2010,506(1) :18-21.
  • 4Hema Chandra G, Lakshmana Kumar O, Prasada Rao R, et al. [J]. J Mater Sci, 2011, DOI 10. 1007/s10853-011- 5661-y.
  • 5Delgado G E,Mora A J,Marcano G,et al. [J]. Mater Res Bull, 2003,38 ( 15 ): 1949-1955.
  • 6Jinhoo Jeong, Haegeun Chung, Yong Chan Ju, et al. [J]. Materials Letters, 2010,64(19) : 2043-2045.
  • 7Suresh Babu G,Kishore Kumar Y B,Bharath Kumar Reddy Y,et al. [J]. Mater Chem Phys,2006,96:442-446.
  • 8Noufi R, Axton R, Herrington C, et al. [J]. Appl Phys Lett,1984,45(6):668-670.
  • 9Repinsl I, Miguel A,Contreras, et al. [J]. Prog Photovolt :Res Appl,2008,16 : 235-239.
  • 10Suresh Babu G,Kishore Kumar Y B,Uday Bhaskar P,et al.[J]. Solar Energy Materials & Solar Cells, 2010,94: 221-226.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部