摘要
产能利用率测算一直是研究我国产能过剩问题的难点。结合产能利用率随机前沿分析框架和潜类别随机前沿模型(LCSFM),找出以区域技术异质性为基础的产能利用率测算方法,它能有效避免目前主流产能利用率测算方法忽视技术异质性而导致的结果偏差。运用该方法测算我国2010—2016年各省市工业产能利用率,结果显示:(1)样本期内全国工业平均产能利用率为83. 08%,总体呈下滑趋势,现有研究存在低估工业产能利用率的问题;(2)产能利用率与区位没有必然联系,按照技术异质性与产出水平关系,全国省份可以划分为技术进步强有效型、弱有效型、无效型和中性型4种类型;(3)不同类型区域具有显著的技术异质性,技术进步强有效型区域产能利用率最高,过剩产能集中于后三类区域。未来产能政策应关注技术异质性引起的区域产能利用率差异,提高政策的针对性和有效性。
How to measure capacity utilization has always been difficulties for the study of overcapacity in China.Combining the stochastic frontier analysis framework of capacity utilization and the latent class stochastic frontier model(LCSFM),a method to measure capacity utilization is developed based on regional technology heterogeneity,which avoids the result deviation caused by overlooking technical heterogeneity in current mainstream methods.The results show that:(1)The average capacity utilization in China is 83.08% in the sample period,showing a downward trend.Most of the existing studies have underestimated the capacity utilization.(2)The capacity utilization is not necessarily related to the location.According to the relationship between technological heterogeneity and output level,provinces can be divided into four types:strong-effective type,weak-effective type,ineffective type and neutral type.(3)Different types of regions have significant technological heterogeneity.The region with strong-effective technological progress has the highest capacity utilization,and the overcapacity is concentrated in the latter three types of regions.Future capacity policy should pay attention to the difference of capacity utilization caused by technology heterogeneity to improve the pertinence and effectiveness of the policy.
作者
吴振明
周江
WU Zhenming;ZHOU Jiang(Institute of Regional and Urban Development,Sichuan Academy of Social Sciences,Chengdu 610072,China)
出处
《南京财经大学学报》
2019年第1期14-25,共12页
Journal of Nanjing University of Finance and Economics
基金
四川省社会科学院资助项目(18QN03)
关键词
产能利用率
产能过剩
技术异质性
潜类别随机前沿模型
capacity utilization
overcapacity
technological heterogeneity
latent class stochastic frontier model(LCSFM)