期刊文献+

形态可控合成氧化亚铜粉体及其光催化性能 被引量:2

Shape-Controlled Synthesis and Photocatalytic Properties of Cu_2O Powder
下载PDF
导出
摘要 采用水热法成功可控合成了球形和立方氧化亚铜粉体。研究表明,在其它实验条件相同时,还原剂(酒石酸)和模板(明胶)的用量对产物的形态控制起到了关键的作用。当酒石酸使用量为0. 005 mol时,将得到较规整的立方形Cu_2O粉体,而在该体系中添加1. 0 g明胶后,将获得球形的Cu_2O粉体。两种形态的Cu_2O粉体最大吸收波长均为500 nm左右(带隙约为2. 2 e V)。可见光催化实验结果表明,球形Cu_2O粉体的光催化性能要优于立方Cu_2O粉体。进一步分析研究得出,两者去除水中甲基橙染料的动力学模型均符合一阶动力学模型。 Cuprous oxide(Cu 2O) powders exhibiting cubic and spherical morphologies were synthesized via a facile hydrothermal method. Results indicated that contents of tartaric acid(TA) and gelatin played vital roles in controlling morphologies.Cubic Cu 2O powders would be obtained when the amount of tartaric acid was 0.005 mol. And spherical Cu 2O powders would be acquired when 1.0 g gelatin was used in the above reaction system. It was observed that the maximium absorption wavenumber for cubic and spherical Cu 2O powders was about 500 nm( E g ≈2.2 eV). Photocatalytic testing results showed that the catalytic property of prepared sphericial Cu 2O powders had advantage over that of cubic Cu 2O powders. The catalytic kinetic model of degradation of methyl orange in water well accorded with the first-order dynamic equation.
作者 徐泽忠 杨昌林 廖凯 韩成良 XU Ze-zhong;YANG Chang-lin;LIAO Kai;HAN Cheng-liang(Analysis and Testing Center, Hefei University , Hefei 230601, China;Department of Chemical and Materials Engineering, Hefei University, Hefei 230601, China)
出处 《人工晶体学报》 EI CAS 北大核心 2019年第2期298-302,共5页 Journal of Synthetic Crystals
基金 2018年合肥学院自然科学发展基金重点项目(18ZR08ZDB)
关键词 氧化亚铜粉体 水热法 可控合成 光催化性能 cuprous oxide powder hydrothermal method shape-controlled synthesis photocatalytic performance
  • 相关文献

参考文献4

二级参考文献72

  • 1柏振海,罗兵辉,金晓鸿.氧化亚铜粉末的制备[J].粉末冶金材料科学与工程,2001,6(4):286-291. 被引量:3
  • 2张广友,张晋康,黄希坝.松香为原料表面活性剂的合成及发展趋势[J].林产化学与工业,1993,13(1):89-96. 被引量:22
  • 3马志忠,叶章基.船舶防污漆加速试验方法研究[J].材料开发与应用,1996,11(4):30-37. 被引量:3
  • 4王能,丁恩勇,程时.纳米微晶纤维素表面改性研究[J].高分子学报,2006,16(8):982-987. 被引量:39
  • 5KUO Chun-hong, I-IUANG Michael-h. Morphologically controlled synthesis of Cu20 nanocrystals and their properties. Nano Today, 2010, 5: 106-116.
  • 6HU F, CHAN K C, YUE T M. Morphology and growth of electrodeposited cuprous oxide under different values of direct current density [J]. Thin Solid Films, 2009, 518: 120-125.
  • 7YANG Hua-ming, OUYANG Jing, TANG Ai-dong, et al. Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles [J]. Materials Research Bulletin, 2006, 41: 1310-1318.
  • 8SHOEIB M A, ABDEL SALAM O E, KHAFAGI M G, et al. Synthesis of Cu20 nanocrystallites and their adsorption and photocatalysis behavior [J]. Advanced Powder Technology, 2011, doi: 10.1016/j.apt.2011.04.001.
  • 9XU Jia-sheng, XUE Dong-feng. Five branching growth patterns in the cubic crystal system: A direct observation of cuprous oxide microcrystals [J]. Acta Materials, 2007, 55: 2397-2406.
  • 10MA Dong, LIU Hai-bo, YANG Hai-bin, et al. High pressurehydrothermal synthesis of cuprous oxide microstructures of novel morphologies [J]. Materials Chemistry and Physics, 2009, 116: 458-463.

共引文献20

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部