期刊文献+

空间变化模糊的图像复原算法 被引量:6

Image restoration algorithm for space-variant blur
下载PDF
导出
摘要 传统的空间不变的模糊图像复原算法无法对空间变化图像取得良好的复原效果,空间变化的图像复原算法能够较好地复原图像,增强复原图像的可读性。新算法使用奇异值分解法将模糊核分解为基滤波器和系数滤波器的线性组合,提出一种总变分和小波框架双正则化模型。并使用ADMM算法将原问题分解为易于求解的子问题进行独立求解,使得算法能快速迭代收敛,在迭代过程中完成图像的复原与优化。实验结果表明:对于空间变化的模糊图像,提出的新算法能够较好地去模糊,取得较高的峰值信噪比和结构相似度,在主观评价上也具有良好的视觉效果。 When the traditional spatial invariant restoration algorithm cannot handle well the images blurred in space-variant way, the space-variant algorithm can restore the blurred images better and enhance readability of restored images. In this paper, singular value decomposition is used to decompose PSF into linear combination of base filter and coefficient filter, and a new regularization model combining total variation and wavelet frame is proposed. The ADMM algorithm is used to converts the complex optimization problem to several sub problems, which makes the algorithm can converge fast. The image restoration and optimization are completed in the iterative process. The experimental results show that the proposed algorithm improves PSNR and SSIM. It has the better image restoration quality in visual effect.
作者 金燕 万宇 JIN Yan;WAN Yu(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China)
出处 《浙江工业大学学报》 CAS 北大核心 2019年第2期219-224,共6页 Journal of Zhejiang University of Technology
基金 浙江省自然科学基金资助(LY17F010015)
关键词 空间变化 模糊 奇异值分解 正则化 space-variant blur SVD regularization
  • 相关文献

参考文献4

二级参考文献40

  • 1张东衡,沈永增,张敏捷.基于分形的低反差图像增强方法[J].浙江工业大学学报,2006,34(3):266-268. 被引量:3
  • 2Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60 (5) : 259-268.
  • 3Vogel C R, Oman M E. Fast, robust total variation-based reconstruction of noisy, blurred images [J]. IEEE Transactions on Image Processing, 1998, 7 (6) : 813-824.
  • 4Bioucas-Dias J, Figueiredo M, Oliveira J. Total variation image deconvolution : a majorization-minimization approach [ C ]//2006 IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings. Toulouse, France: Institute of Electricaland Electronics Engineers Inc. 2006: 11861-11864.
  • 5Babaean S, Molina R, Katsaggelos A. Parameter estimation in TV imagerestoration using variational distribution approximation [J]. IEEE Transactions on Image Processing, 2008, 17 (3): 326-339.
  • 6Figueiredo M, Nowak R D. An EM algorithm for wavelet-based image restoration[ J ]. IEEE Transactions on Image Processing, 2003, 12(8) : 906-916.
  • 7Figueiredo M, Nowak R D. A bound optimization approach to wavelet-based image deconvolution [ C ]//Proceedings International Conference on Image Processing, ICIP2005. Genoa, Italy: Institute of Electrical and Electronics Engineers Computer Society, 2005 : 782-785.
  • 8Bioucas-Dias J. Bayesian wavelet-based image deconvolution : a GEM algorithm exploiting a class of heavy-tailed priors[J]. IEEE Transactions on Image processing, 2006, 15(4) : 937-951.
  • 9Wen Youwei, Michael K Ng, Ching Waiki. Iterative algorithms based on decoupling of deblurring and denoising for image restoration[J]. SIAM Journal on Scientific Computing, 2008, 30(5) : 2655-2674.
  • 10Bioucas-Dias J, Figueiredo M. An iterative algorithm for linear inverse problems with compound regularizers [ C ]//Proceedings - International Conference on Image Processing, ICIP2008. San Diego, USA: IEEE Computer Society, 2008: 685-688.

共引文献20

同被引文献41

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部