期刊文献+

基于谱聚类的自适应新生目标强度状态提取 被引量:2

Method of adaptive newborn intensity state extraction based on spectral clustering
下载PDF
导出
摘要 由于K均值算法易受噪声干扰且对初始粒子的选取较为敏感,在进行PHD状态提取时,难以获得稳定可靠的状态估计结果。对此,提出基于谱聚类的自适应新生目标强度状态提取方法,运用核密度估计理论和mean-shift算法二次估计PHD,提取滤波分布的峰值位置作为各个目标状态的估计值进行目标状态的提取。实验结果表明,改进后的算法相比原始算法在精度上有了明显提高。 The clustering algorithm has great dependence on the initial chosen particles and may be disturbed by noise around the circumstance, thus it affects the results of the state extracting. To improve the accuracy of the state extraction and reduce the burden of the calculation, a brief approach was adopted to extract the state of the targets, based on the adaptive newborn target intensity PHD filter. To further increase the filter precision, the spectral clustering algorithm was designed to estimate PHD with kernel density estimation theory and mean shift method. The peak value of the PHD filter was used as the estimation value to get the state of the targets. The simulation results show that the improved algorithm has better performance than the original algorithm.
作者 王俊洁 刘青 WANG Jun-jie;LIU Qing(School of Information Science and Technology,Chuxiong Normal University,Chuxiong 675000,China;School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
出处 《计算机工程与设计》 北大核心 2019年第3期874-878,共5页 Computer Engineering and Design
基金 北京市科技厅计划基金项目(201602128)
关键词 高斯粒子PHD滤波 自适应新生目标强度PHD滤波 MEAN-SHIFT算法 状态提取 谱聚类 Gauss particle PHD filter adaptive newborn intensity PHD filter mean-shift algorithm state extraction spectral clustering
  • 相关文献

参考文献2

二级参考文献113

  • 1田淑荣,王国宏,何友.多目标跟踪的概率假设密度粒子滤波[J].海军航空工程学院学报,2007,22(4):417-420. 被引量:10
  • 2Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,(04):1152-1178.doi:10.1109/TAES.2003.1261119.
  • 3Mahler R P. Statistical Multisource-Multitarget Information Fusion[M].Norwood:Artech House,2007.
  • 4Bar-Shalom Y. Tracking and Data Association[M].San Diego:academic Press,1988.
  • 5Bar-Shalom Y,Kirubarajan T,Lin X. Probabilistic data association techniques for target tracking with applications to sonar,radar and EO sensors[J].IEEE Transactions on Aerospace and Electronic Systems,2005,(08):37-56.
  • 6Musicki D,Evans R. Joint integrated probabilistic data association:JIPDA[J].IEEE Transactions on Aerospace and Electronic Systems,2004,(03):1093-1099.doi:10.1109/TAES.2004.1337482.
  • 7Blackman S S. Multiple hypothesis tracking for multiple target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2004,(01):5-18.
  • 8Erdinc O,Willett P,Bar-Shalom Y. A physical-space approach for the probability hypothesis density and cardinalized probability hypothesis density filters[A].Orlando,FL:SPIE,2006.623619-623619-12.
  • 9Erdinc O,Willett P,Bar-Shalom Y. Probability hypothesis density filter for multitarget multisensor tracking[A].Philadelphia,PA:IEEE,2005.25-29.
  • 10Mahler R. A theory of PHD filters of higher order in target number[A].Orlando,FL:SPIE,2006.62350K-62350K-12.

共引文献57

同被引文献27

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部