期刊文献+

基于偏振遥感的油气污染监测研究

Oil and Gas Pollution Monitoring based on Polarization Remote Sensing
下载PDF
导出
摘要 传统油气污染监测手段较为局限,以目标辐射能量作为偏振特征的偏振遥感,能够较好分辨目标地物低反射区和轮廓。通过综述偏振遥感的定义和国内外基于不同种类的油类监测方法在油污染监测与评价中的应用现状,发现偏振遥感弥补了传统意义上陆地土壤油类污染监测手段的不足,以期为遥感目标识别与油类污染修复提供新手段。 Traditional oil and gas pollution monitoring methods have limitations.Polarization rem-ote sensing with the polarization characteristics of target radiant energy can better distinguish the low reflection area and contour of the target object.This article introduced the definition of polari-zation remote sensing,and summarized the application and current status of oil monitoring and evaluation based on different types of oil monitoring methods at home and abroad.Studies show that polarization remote sensing makes up for the shortcomings of traditional methods for monitor-ing oil pollution in terrestrial soils,and provides a new means for remote sensing target identifica-tion and oil pollution and restoration.
作者 李焕 孙军军 李伟 阿依江.艾尔肯拜克 Li Huan;Sun Junjun;Li Wei;Ayi Jiang Elkenbaike(PetroChina Xinjiang Oilfield Branch Data Company,Karamay Xinjiang 834000,China)
出处 《中国环境管理干部学院学报》 CAS 2019年第1期90-93,共4页 Journal of Environmental Management College of China
关键词 油气开采污染 偏振遥感监测 信息获取 oil and gas exploitation pollution polarization remote sensing monitoring information acquisition
  • 相关文献

参考文献5

二级参考文献64

  • 1李四海.海上溢油遥感探测技术及其应用进展[J].遥感信息,2004,26(2):53-57. 被引量:47
  • 2师庆东,肖继东,潘晓玲,吕光辉,陆海燕.近20a来新疆植被覆盖变化特征研究[J].干旱区研究,2004,21(4):389-394. 被引量:41
  • 3陆佩玲,于强,贺庆棠.植物物候对气候变化的响应[J].生态学报,2006,26(3):923-929. 被引量:202
  • 4陈效逑,喻蓉.1982~1999年我国东部暖温带植被生长季节的时空变化[J].地理学报,2007,62(1):41-51. 被引量:61
  • 5[1]Kong, J. A., Swartz, A. A. et al., Identification of terrain cover using the optimal terrain classifier, J. Electronmagn. Waves Applicat., 1988, 2: 171-194.
  • 6[2]Lee, J. S. et al., Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution, Int. J. Remote Sensing, 1994, 15(11): 2299-2311.
  • 7[3]Kwok, R., Hara, Y., Atkins, R. G. et al., Application of neural networks to sea ice classification using polarimetric SAR images, Proceedings of IGARSS'91, 1991, 1: 85-88.
  • 8[4]Tzeng, Y. C., A dynamic learning neural network for remote sensing application, IEEE Trans. Geosci. Remote Sensing, 1995, 32(5): 1096-1102.
  • 9[5]Chen, K. S., Huang, W. P. et al., Classification of multifrequency polarimtric SAR imagery using a dynamic learning neural network, IEEE Trans. Geosci. Remote Sensing, 1996, 34(3): 814-820.
  • 10[6]Tzeng, Y. C., Chen, K. S., A fuzzy neural network to SAR image classification, IEEE Trans. Geosci. Remote Sensing, 1998, 36(1): 301-307.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部