期刊文献+

基于VMD和SVM的舰船辐射噪声特征提取及分类识别 被引量:18

Feature extraction and classification of ship radiated noise based on VMD and SVM
下载PDF
导出
摘要 针对复杂海洋背景下舰船声频辐射噪声特征提取困难的问题,提出一种基于变分模态分解、中心频率、复杂度特征和支持向量机的舰船辐射噪声特征提取及分类识别方法。对四类舰船辐射噪声信号使用变分模态方法分解,得到一定数量的固有模态函数。通过比较提取能量最大的固有模态函数中心频率和排列熵作为特征参数,并利用支持向量机方法对四类舰船信号样本进行分类识别。实验结果表明,该方法可以实现对舰船辐射噪声的特征提取,与已有方法对比,该方法具有较高的识别率。 In order to solve the problem that the feature extraction of ship radiated noise in complex ocean environment is difficult,a method for feature extraction and classification of ship radiated noise based on variational mode decomposition,center frequency,complexity and support vector machine was presented.Four kinds of ship radiated noise signals were decomposed into several intrinsic mode functions with variational mode decomposition.In comparison,the center frequency and permutation entropy of intrinsic mode function with the maximum energy were taken as the characteristic parameters.The characteristic parameters acted as the input of support vector machine to distinguish the four kinds of ship.Results show that this method can realize the feature extraction of ship radiated noise,and it has higher recognition rate than the existing methods.
作者 李余兴 李亚安 陈晓 蔚婧 LI Yuxing;LI Yaan;CHEN Xiao;YU Jing(School of Marine Science and Technology,Northwestern Polytechnical University,Xi′an 710072,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2019年第1期89-94,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(51179157 51409214 11574250)
关键词 变分模态分解 复杂度 支持向量机 特征提取 分类识别 variational mode decomposition complexity support vector machine feature extraction classification and recognition
  • 相关文献

参考文献4

二级参考文献35

  • 1侯威,封国林,董文杰,李建平.利用排列熵检测近40年华北地区气温突变的研究[J].物理学报,2006,55(5):2663-2668. 被引量:44
  • 2王向军,向东,蒋涛,林春生,龚沈光,方兴.一种双种群进化规划算法[J].计算机学报,2006,29(5):835-840. 被引量:24
  • 3Bulsari A.Some Analytical Solutions to the General Approximation Problem Using Feedforward Neural Networks[J].IEEE Trans.on Neural Networks,1993,6:991-996.
  • 4Moore F.Passive Sonar Target Recognition Using a Back-propagation Neural Network[D].Naval Postgraduate School,Monterrey,California,July,1991.
  • 5张岩. 多元统计分析在舰船辐射噪声分类识别中的应用[D].北京:中国科学院声学研究所, 2007.
  • 6章新华,王骥程,林良骥. 基于小波变换的舰船辐射噪声特征提取[J]. 声学学报, 1997, 22(2): 139-144.
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Royal Society of London Proceedings, 1998, 1971 (454): 903-995.
  • 8Roveri N, Carcaterra A. Damage detection in structures undertraveling loads by Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2012, 28(2): 128- 144.
  • 9Yang Hong, Li Guo-hui. Research of noise reduction of chaotic signal based on empirical mode decomposition[J]. Telkomnika, 2014, 12(3): 1881-1886.
  • 10Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society of London A, 2004, 2046 (460): 1597-1611.

共引文献152

同被引文献166

引证文献18

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部