摘要
视频GIS技术可以融合视频处理技术与GIS分析技术实现视频场景的公共安全监控,在公共场所视频监控应用领域,人群密度和数量能够反映地理空间场景的人群拥挤程度,具有一定的公共安全风险控制作用。为满足公共安全领域利用视频GIS技术对视频人群监测及分析的需求,提出了一种视频前景多特征融合的人群密度及数量估计方法。该方法融合前景图像块的边缘纹理特征,通过SVM区分场景人群密度,然后以归一化前景面积、轮廓和边缘纹理特征作为回归因子,根据人群密度差异分类构建回归模型,进而估算场景人群数量。实验结果表明,此方法能够高效估计视频场景的人群密度和数量,准确表征该场景人群分布状态。
Video GIS technology can integrate video processing technology and GIS analysis technology to realize the public security monitoring of video scene. The crowd density and the quantity can reflect the crowds’ crowding degree of the geospatial scene and have certain control effects on public security risk in the field of video surveillance applications in public places. In order to meet the needs of video surveillance and analysis in the security field, this paper proposes a method of crowd density and quantity estimation based on multi-feature fusion of video foreground. The method combines the edge features and texture features of the foreground image block and distinguishes the crowd density in the scene by SVM, then it uses the normalized foreground area, the normalized foreground contour and the edge texture features as regression factorsto construct the regression model according to the crowd density difference classification results and estimates the number of scene crowds. The experimental results show that the method can efficiently estimate the crowd density and quantity in the video scene, and it could accurately represent the distribution status of crowd in the scene.
作者
周艳
罗云馨
江荣贵
张叶廷
黄曼娜
蒋璠
ZHOU Yan;LUO Yunxin;JIANG Ronggui;ZHANG Yeting;HUANG Manna;JIANG Fan(School of Resources and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing,Wuhan University,Wuhan 430072,China)
出处
《地理信息世界》
2019年第1期41-47,60,共8页
Geomatics World
基金
国家重点研发计划项目(2018YFB0505500
2018YFB0505501和2016YFB0502303)
国家自然科学基金项目(41871321
41471332和41571392)资助
关键词
人群密度分类
人群数量回归
前景检测
特征提取
透视校正
crowd density classification
crowd quantity regression
foreground detection
feature extraction
perspective correction