摘要
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
基金
supported by NSFC (No. 61571055)
fund of SKL of MMW (No. K201815)
Important National Science & Technology Specific Projects (2017ZX03001028)