期刊文献+

基于随机鞭策机制的散漫度粒子群算法

Dispersion Particle Swarm Optimization Algorithm Based on Random Whip Mechanism
下载PDF
导出
摘要 针对标准粒子群算法全局搜索能力差、易陷入早熟等问题,提出了基于随机鞭策机制的散漫度粒子群算法。首先,给出了粒子散漫度概念,通过动态地对各个粒子的散漫程度进行评估,判断粒子状态,并通过随机鞭策机制处理散漫粒子,避免算法陷入局部最优;其次,对积极运动的粒子利用个体历史最优位置进行处理,加快算法收敛速度;对11个标准函数进行测试,并与标准粒子群算法和其他改进算法进行对比,实验结果表明,基于散漫度的快速收敛粒子群算法寻优精度更高,收敛速度更快。 The Particle Swarm Optimization(PSO)has problems as being trapped in local minima due to premature convergence and weakness of global search capability.To overcome these disadvantages,Dispersion Particle Swarm Optimization Algorithm based on Random Whip Mechanism(EGPSO)is proposed.Firstly,the concept of particles'dispersion is presented.In order to avoid falling into local optimum,the algorithm determines the state of the loose particles and marks them by evaluating the dispersion of each particle dynamically,and then uses random whip mechanism to deal with loose particles.Secondly,in order to further improve the algorithm's convergence speed and accuracy,EGPSO handles active particles by using the optimal location of history.Experimental results on eleven standard benchmark functions demonstrate that EGPSO outperforms original PSO and the other related algorithms in terms of the solution quality and the stability.
作者 袁罗 葛洪伟 YUAN Luo;GE Hongwei(Ministry of Education Key Laboratory of Advanced Process Control for Light Industry(Jiangnan University),Wuxi,Jiangsu 214122,China;School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第4期66-71,90,共7页 Computer Engineering and Applications
关键词 粒子群算法(PSO) 随机鞭策机制 散漫度 寻优精度 收敛速度 Particle Swarm Optimization(PSO) random whip mechanism dispersion optimization accuracy conver-gence speed
  • 相关文献

参考文献3

二级参考文献32

  • 1李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:307
  • 3Kennedy J, Eberhartr C. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Piscataway, 1995: 1942-1948.
  • 4Bergh F, Engelbreeht A P. A cooperative approaeh to partiele swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 225-239.
  • 5Ratnaweera A, Halgamuge S, Waton H C. Self-organizing hierarehieal partiele Swarm optimizer with time-varying Acceleration coef?eients [J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240-255.
  • 6Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm [J]. Chaos Solitons & Fractals, 2008, 37(3): 698-705.
  • 7Jiang C W, Etorre B. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization [J]. Mathematics and Computers in Simulation, 2005, 68(1): 57-65.
  • 8Fan S, Zahara E. Hybrid simplex search and particle swarm optimization for unconstratined optimization problems [J]. European Journal of Operational Research, 2007, 181 (2): 527-548.
  • 9Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (3): 281-295.
  • 10Zhan Z H, Zhang J, Li Y, Chung H H. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2009, 39 (6): 1362-1381.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部