期刊文献+

GFD和核主元分析的机械振动特征提取 被引量:7

Vibration Feature Extraction Based on Generalized Fractal Dimension and Kernel Principal Component Analysis
下载PDF
导出
摘要 针对旋转机械非线性特征提取的问题,提出了广义分形维数(generalized fractal dimension,简称GFD)和核函数主元分析(kernel principal component analysis,简称KPCA)的旋转机械振动特征提取方法。首先,通过广义分形维数进行初次特征提取,形成高维特征空间;其次,通过核主元分析方法对高维特征空间降维并进行第二次特征提取;最后,利用核主元分析方法和KN近邻(KNN)方法对转子和轴承不同状态下的特征进行了分类。研究表明,GFD-KPCA方法对旋转机械进行了有效的特征提取,对不同状态的数据有高精度的分类,对参数选取有较低的依赖性。轴承微弱振动特征提取结果显示,GFD-KPCA性能优于常规的KPCA特征提取算法,具有更好的精度和适用范围。 For the problem of rotary machine nonlinear feature extraction,a method based on generalized fractal dimension(GFD)and kernel principal component analysis(KPCA)is proposed.Firstly,GFD is used for feature extraction and formed a high dimensions feature space.Secondly,KPCA is used for dimensionality reduction in high dimensions space and feature extraction ulteriorly.Finally,data in different running conditions of a rotor system and faulty bearing are classified using the methods of KPCA and K nearest neighbor(KNN).The result shows that this GFD-KPCA method can effectively extract features,accurately classify data in different conditions,and has a low dependence on selecting parameters.Bearing weak fault vibration feature extraction results show that the performance of GFD-KPCA is better than that of conventional KPCA feature extraction algorithm,which has better accuracy and scope of application.
作者 韦祥 李本威 吴易明 WEl Xiang;LI Benwei;WU Yiming(Aeronautical Fundamentals College,Naval Aviation University Yantai,264001,China;Luoyang Bearing Research Institute Co.,Ltd Luoyang,471039,China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2019年第1期32-38,219,共8页 Journal of Vibration,Measurement & Diagnosis
基金 泰山学者工程专项经费资助项目 国家自然科学基金资助项目(51505492)
关键词 旋转机械 广义分形维数 核主元分析 特征提取 故障分类 rotary machine generalized fractal dimension kernel principal component analysis feature extraction fault classification
  • 相关文献

参考文献7

二级参考文献52

  • 1侯胜利,胡金海,李应红.基于混沌变量的航空发动机性能监控与故障诊断[J].航空动力学报,2005,20(2):314-317. 被引量:10
  • 2温晓通,孟丽艳,朱劲松,姚力.一种非线性时间序列的关联维快速算法[J].北京师范大学学报(自然科学版),2005,41(4):358-361. 被引量:5
  • 3李辉,郑海起,唐力伟.应用Hilbert-Huang变换的齿轮磨损故障诊断研究[J].振动.测试与诊断,2005,25(3):200-204. 被引量:18
  • 4王妍,徐伟.Lorenz系统中时间序列的相空间重构方法与特性[J].振动工程学报,2006,19(2):277-282. 被引量:8
  • 5徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 6Fuchslin R M,Shen Y,Meier P E.An efficient algorithm to determine fractal dimension of point sets[J].Physics Letter A,2001,285:69-75.
  • 7Wong Angeline,Leejay Wu,Phillip B G,et al.Fast estimation of fractal dimension and correlation integral on streem data[J].Information Processing Letters,2005,93:9 1-97.
  • 8Philip C L,Broek V D,Egmond J V,et al.Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series[J].Physica D,2005,203:1 98-208.
  • 9Alberto R N,Montesino Etero M E.A method of the correlation dimension for on-line condition monitoring of large rotating machinery[J].Mechanical System and Signal Processing,2005,19:939-954.
  • 10Jiang J D, Chen J,Qu L S. The application of correlation dimension in gearbox condition monitoring [J]. Journal of Sound and Vibration, 1999, 223(4): 529- 541.

共引文献143

同被引文献94

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部