期刊文献+

基于价值评估的不围棋递归算法 被引量:1

Recursive algorithm for NoGo based on value evaluation
下载PDF
导出
摘要 介绍了不围棋及其规则,并且给出了当前不围棋人工智能的方法及其不足之处.通过分析不围棋博弈的特点,提出了价值评估模型函数;基于此,构造出了递归算法,实现了不围棋人工智能,解决了当前已有算法时间和空间复杂度过高的问题;给出了实现此算法的程序与著名开源软件OASE-NoGo的对弈结果:达到了90%以上的胜率.同时,通过一个常见局面展示了本文算法较传统算法在程序计算上的优势,证明了本文算法的可行性和高效性. First,this paper introduces the rules of the game NoGo.Next,we review current methods of artificial intelligence and their respective shortcomings.Then,the article shows an analysis of the game theory characteristics of NoGo and proposes a value evaluation function.Based on this function,a multi-layer recursive algorithm to the artificial intelligence of NoGo can be constructed,which addresses the problem of high complexity in time and space in the present algorithm.Finally,the paper demonstrates the capability of this algorithm and provides results that the program against with the famous open source software OASE-NoGo,which achieved a winning rate of more than 90%.In a typical situation,it demonstrates that the algorithm is better than existing algorithms in computing,and proves the feasibility and effectiveness of this method.
作者 郭倩宇 陈优广 GUO Qian-yu;CHEN You-guang(Computing Center,East China Normal University,Shanghai 200062,China)
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期58-65,共8页 Journal of East China Normal University(Natural Science)
关键词 人工智能 机器博弈 不围棋 价值评估 递归 artificial intelligence machine game NoGo value evaluation recursion
  • 相关文献

参考文献2

二级参考文献14

  • 1岳鹏,刘洪涛,邱玉辉.基于数学形态学的围棋棋群聚类算法[J].计算机科学,2006,33(9):173-174. 被引量:2
  • 2余平,卢本捷,李文峰.计算机围棋探索[J].程序员,2007(6):100-104. 被引量:1
  • 3ZOBRIST A. A model of visual organization for game of Go[ C] //Proceedings of the Spring Joint Computer Cinferenee, 1969 : 103-112.
  • 4BOUZY B. Mat hematical morphology applied to computer Go[ C]//lntemational Journal of Pattern Recognition and Artificial Intelligence, 2003:257-268.
  • 5Denim S. Anti Atari Go[EB/OL]. (2011-12-07)[2014-8-301. http://senseis.xmp.net/?AntiAtariGo.
  • 6Auer P,Cesa-Bianchi N,Fischer P. Finite-time Analysis of the Multiarmed Bandit Problem [J]. Machine Learning,2002,47(2- 3):235-256.
  • 7Koesis L, SzepesvOri C. Bandit based monte-carlo planning [C ]//Proceedings of the 17th European conference on Machine Learning, Berlin in Germany: Springer-Verlag, 2006:282-293.
  • 8CHOU C W, Teytaud O, and YEN S J. Revisiting Monte-Carlo tree search on a normal form game: NoGo[C] // Proceedings of the 2011 international conference on Applications of Evolutionary Computation, Torino in Italy: Springer-Verlag, 2011:73-82.
  • 9LEE C S ,WANG M H ,CHEN Y J,et al.. Genetic fuzzy markup language for game of NoGo[J].Knowledge-Based Systems,2012(34): 64-80.
  • 10SUN Y X, LIU C, and QIU H K. The research on patterns and UCT algorithm in NoGo game[C]//25th Chinese Control and Deci- sion Conference, Guiyang:IEEE, 2013:1178-1182.

共引文献6

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部