期刊文献+

多策略自适应大规模本体映射算法 被引量:4

Multi-strategy Adaptive Large-scale Ontology Mapping Algorithm
下载PDF
导出
摘要 大数据背景下大规模本体映射的时间复杂度较高,效率和精度较低。为此,提出一种基于模块化和局部置信度的多策略自适应大规模本体映射算法。对本体内部进行聚类和模块化,基于信息检索策略发现模块间高相似度的相关子本体,计算相关子本体间各映射策略下的局部置信度,在组合映射结果时基于局部置信度对相应策略的权值进行自适应调整。在此基础上,利用启发式贪心策略提取映射结果并基于映射规则矫正结果。实验结果表明,与Falcon、ASMOV方法相比,该算法具有较高的查全率、查准率与F-measure值。 Large-scale ontology mapping in the context of large data has high time complexity,low efficiency and accuracy.Therefore,a multi-strategy adaptive large-scale ontology mapping algorithm based on modularity and local confidence is proposed.Clustering and modularizing the inner part of the system,discovering the correlated sub-ontologies with high similarity between modules based on information retrieval strategy,calculating the local confidence under each mapping strategy among the correlated sub-ontologies,and adjusting the weight of the corresponding strategy adaptively based on the local confidence when combining the mapping results.On this basis,heuristic greedy strategy is used to extract mapping results and correct them based on mapping rules.Experimental results show that compared with Falcon and ASMOV methods,the proposed algorithm has higher recall,precision and F-measure value.
作者 蒋猛 禹明刚 王智学 JIANG Meng;YU Minggang;WANG Zhixue(College of Command and Control Engineering,The Army Engineering University of PLA,Nanjing 210007,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期14-19,共6页 Computer Engineering
基金 国家自然科学基金(61802428)
关键词 大数据 大规模本体映射 模块化 局部置信度 自适应 big data large-scale ontology mapping modularity local confidence self-adaption
  • 相关文献

参考文献6

二级参考文献66

  • 1袁洋,李善平.基于语义Web的本体映射方法综述[J].计算机科学,2004,31(5):5-8. 被引量:12
  • 2黄烟波,张红宇,李建华,谭立球,李志.本体映射方法研究[J].计算机工程与应用,2005,41(18):27-29. 被引量:38
  • 3杨立,左春,王裕国.基于语义距离的K-最近邻分类方法[J].软件学报,2005,16(12):2054-2062. 被引量:31
  • 4廖述梅.基于本体的语义标注原型评述[J].计算机工程与科学,2006,28(9):123-125. 被引量:16
  • 5曹泽文,钱杰,张维明,邓苏.一种综合的概念相似度计算方法[J].计算机科学,2007,34(3):174-175. 被引量:35
  • 6Lin D. An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning. Madison, USA: Morgan Kaufmann, 1998. 296-304.
  • 7Pirro G. A semantic similarity metric combining features and intrinsic information content. Data and Knowledge Engineering, 2009, 68(11): 1289-1308.
  • 8Richardson R, Smeaton A F. Using WordNet in a Knowledge-Based Approach to Information Retrieval, Technical Report Working Paper CA-0395, School of Computer Applications, Dublin City University, Ireland, 1995.
  • 9Seco N, Veale T, Hayes J. An intrinsic information content metric for semantic similarity in WordNet. In: Proceedings of 16th European Conference on Artificial Intelligence, including Prestigious Applicants of Intelligent Systems. Valencia, Spain: IOS Press, 2004. 1089-1090.
  • 10Atkinson J, Ferreira A, Aravena E. Discovering implicit intention-level knowledge from natural-language texts. Knowledge-Based Systems, 2009, 22(7): 502-508.

共引文献113

同被引文献37

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部