期刊文献+

一种大规模MIMO系统的低复杂度预编码算法 被引量:1

A Low Complexity Precoding Algorithm for Large-scale MIMO System
下载PDF
导出
摘要 在大规模多输入多输出系统中,基站侧天线数目和用户数目的增加导致信道矩阵的维度也增加,从而使预编码矩阵的计算复杂度增大。为此,将截断多项式展开理论与最小均方误差(MMSE)预编码算法相结合,提出一种低复杂度的预编码算法。将矩阵多项式的前J项和近似为矩阵的逆矩阵,在MMSE预编码的基础上推导该算法的预编码矩阵,并求解发射功率有限时最佳阶数的表达式。仿真结果表明,在与MMSE预编码算法频谱效率相近的情况下,该算法可有效降低预编码的计算复杂度。 In large-scale Multiple-Input Mutiple-Output(MIMO)system,the increase in the number of antennas and users on the base station side leads to an increase in the dimension of the channel matrix,which increases the computational complexity of the precoding matrix.To solve this problem,a low complexity precoding algorithm is proposed by combining the Truncated Polynomial Expansion(TPE)theory with the Minimum Mean Square Error(MMSE)precoding algorithm.The sum of the J terms in front of the matrix polynomial is approximated as the inverse of the matrix,based on the MMSE precoding,the precoding matrix of the proposed algorithm is deduced,and the expression of the optimal order is solved when the transmitting power is limited.Simulation results show that the proposed algorithm can effectively reduce the computational complexity of precoding when the spectral efficiency is similar to that of MMSE precoding algorithm.
作者 朱国晖 陈星 ZHU Guohui;CHEN Xing(School of Telecommunication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期96-100,共5页 Computer Engineering
基金 陕西省教育厅科学研究计划项目(07JK377)
关键词 多输入多输出系统 截断多项式展开 频谱效率 预编码 复杂度 Multiple-Input Mutiple-Output(MIMO) system Truncated Polynomial Expansion(TPE) spectral efficiency precoding complexity
  • 相关文献

参考文献3

二级参考文献84

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献773

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部