期刊文献+

基于RNN集成学习的个人轨迹恢复方法 被引量:2

Personal Trajectory Recovery Method Based on RNN Ensemble Learning
下载PDF
导出
摘要 从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网络模型描述个人轨迹的可拼接程度,使用集成学习方法构建多个RNN网络,以达到恢复个人轨迹的目的。实验结果表明,该方法可以较好地捕获轨迹时空连续性特征,实现个人轨迹恢复。 Connecting and restoring a relatively complete personal trajectory from multiple trajectory databases is important for travel recommendations and mobile navigation.Based on personal trajectory recovery,an integrated learning method for RNN is proposed.By defining a formal model of personal trajectory recovery,each training library is divided into multiple training sub-libraries by using the track point number sampling mode,and an RNN network model is used to describe the splicing degree of the personal trajectory.An integrated learning method is used to construct multiple RNN networks to achieve the goal of restoring personal trajectories.Experimental results show that this method can capture the temporal and spatial continuity of the trajectory and realize the personal trajectory recovery.
作者 鲁强 刘歆琦 LU Qiang;LIU Xinqi(Beijing Key Lab of Petroleum Data Mining,China University of Petroleum,Beijing 102249,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期188-196,201,共10页 Computer Engineering
基金 国家自然科学基金(61402532) 中国石油大学(北京)青年基础科研基金(01JB0415)
关键词 轨迹恢复 轨迹拼接 集成学习 神经网络 RNN网络 trajectory recovery trajectory splicing ensemble learning neural network RNN network
  • 相关文献

参考文献4

二级参考文献51

  • 1黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19. 被引量:249
  • 2凌晓峰,SHENG Victor S..代价敏感分类器的比较研究(英文)[J].计算机学报,2007,30(8):1203-1212. 被引量:35
  • 3Liu Chenglin. Classifier Combination Based on Confidence Transformation[J]. Pattern Recognition. 2005, 38(1): 11-28.
  • 4Aksela M, Laaksonen J. Using Diversity of Errors for Selecting Members of a Committee Classifier[J]. Pattern Recognition, 2006, 39(4): 608-623.
  • 5Ian H, Frank W E. Data Mining: Practical Machine Learning Tools and Techniques[M]. 2nd ed, San Francisco: Morgan Kaufmann, 2005.
  • 6Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1) : 119-139.
  • 7Valiant L G. A theory of learnable[J] Communications of the ACM, 1984, 27(11)z 1134-1142.
  • 8Kearns M, Valiant L G. Learning boolean formulate or factoring, TR-1488 [R]. Cambridge, MA: Havard University Aiken Computation Laboratory, 1988.
  • 9Kearns M, Valiant L G. Grytographie limitation on learning Boolean formulae and finite automata [C] //Proe of the 21st Annual ACM Syrup on Theory of Computing. New York: ACM, 1989: 433-444.
  • 10Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999, 37(3) : 297-336.

共引文献111

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部