期刊文献+

基于深度学习的图像美观度评价 被引量:1

Image Aesthetic Assessment Based on Deep Learning
下载PDF
导出
摘要 基于深度卷积神经网络的特征提取方法比传统手工特征提取方法更加贴近人类大脑的视觉感受。为此,建立一种两通道组合图像美观度评价模型。使用美学信息通道和场景信息通道的组合来自动提取图像中美学信息和场景类别信息,通过融合两类信息最终形成美感分类器。在AVA库上进行训练和测试,结果表明,与图像局部特征提取方法相比,该模型结构较简洁,且具有较高的分类准确率。 The method of extracting features based on deep Convolutional Neural Network(CNN)is closer to the visual perception of the human brain than the traditional manual extraction feature method.Therefore,a two-channel combination model is proposed.The combination of the aesthetic information channel and the scene information channel is used to automatically extract the aesthetic information and scene category information in the image,and finally combine the two types of information to form an aesthetic classifier.The training and testing on the AVA library show that compared with the image local feature extraction method,the model structure is simple and has high classification accuracy.
作者 费延佳 李福翠 邵枫 FEI Yanjia;LI Fucui;SHAO Feng(Department of Information Science and Engineering,Ningbo University,Ningbo,Zhejiang 315211,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期212-216,224,共6页 Computer Engineering
基金 国家自然科学基金(61622109)
关键词 美观度评价 卷积神经网络 场景识别 两通道 分类网络 aesthetic assessment Convolutional Neural Network(CNN) scene recognition two-channel classification network
  • 相关文献

参考文献1

二级参考文献21

  • 1Wang W N, Cai D, Wang L, Huang Q H, Xu X M, Li X L. Synthesized computational aesthetic evaluation of photos. Neurocomputing, 2016, 172:244-252.
  • 2Tong H H, Li M J, Zhang H J, He J R, Zhang C S. Clas- sification of digital photos taken by photographers or home users. In: Proceedings of the 5th Pacific Rim Conference on Multimedia. Tokyo, Japan: Springer, 2004. 198-205.
  • 3Datta R, Joshi D, Li J, Wang J Z. Studying aesthetics in photographic images using a computational approach. In:Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 288-301.
  • 4Wang W N, Zhao W J, Cai C J, Huang J X, Xu X M, Li L. An efficient image aesthetic analysis system using Hadoop. Signal Processing: Image Communication, 2015, 39:499-508.
  • 5Ke Y, Tang X O, Jing F. The design of high-level features for photo quality assessment. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. New York, USA: IEEE, 2006. 419-426.
  • 6Tang X O, Luo W, Wang X G. Content-based photo quality assessment. IEEE Transactions on Multimedia, 2013, 15(8): 1930-1943.
  • 7Lu X, Lin Z, Jin H L, Yang J C, Wang J Z. Rating im- age aesthetics using deep learning. IEEE Transactions on Multimedia, 2015, 17(11): 2021-2034.
  • 8Marchesotti L, Perronnin F, Larlus D, Csurka G. Assessing the aesthetic quality of photographs using generic image de- scriptors. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 1784-1791.
  • 9Guo L H, Xiong Y C, Huang Q H, Li X L. Image esthetic assessment using both hand-crafting and semantic features. Neurocomputing, 2014, 143:14-26.
  • 10Krizhevsky A, Sutskever I, Hinton G E. ImageNet classifica- tion with deep convolutional neural networks. In: Proceed- ings of the 26th Annual Conference on Neural Information Processing Systems 2012. Lake Tahoe, USA: Curran Asso- ciates, Inc., 2012. 1097-1105.

共引文献52

同被引文献16

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部