期刊文献+

融合时间序列与多尺度特征的虚假评论识别方法 被引量:3

Fake Reviews Identification Method Fusing Time Series and Multi-scale Features
下载PDF
导出
摘要 结合时间序列与多尺度特征,提出一种改进的虚假评论识别方法。考虑时间因素对评分及其分布的影响,构建基于多维时间序列的虚假评论识别模型提取异常评论特征,并对异常评论特征进行层次划分,根据多尺度特征思想获取基准尺度特征及细分尺度特征。采用基于密度峰值的聚类算法识别虚假评论,并提高虚假评论识别模型的抗噪能力。实验结果表明,与基于基准尺度特征和多尺度特征的密度峰值聚类虚假评论识别方法相比,该方法的AUC值达到92%,虚假评论识别正确率更高。 This paper proposes an improved fake reviews identification method combining time series with multi-scale features.Considering the influence of time factors on the ratings and its distribution,it constructs fake reviews identification model based on multi-dimensional time series to extract abnormal features.It divides abnormal review features into groups,benchmark features and subdivision scale features are extracted according to multi-scale feature idea.To improve the noise immunity of false reviews identification models,it uses a clustering algorithm based on density peaks to identify fake views.Experimental results show that this method has higher identification correct rate of fake reviews and AUC value reach 92% compared with false comment identification method through density peaks clustering based on benchmark scale feature and multi-scale feature.
作者 狄瑞彤 王红 房有丽 DI Ruitong;WANG Hong;FANG Youli(School of Information Science and Engineering,Shandong Normal University,Jinan 250358,China;College of Life Science,Shandong Normal University,Jinan 250358,China;Shandong Provincial Key Laboratory of Distributed Computer Software Novel Technology,Jinan 250014,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第3期278-285,292,共9页 Computer Engineering
基金 国家自然科学基金(61672329 61373149) 山东省教育科学规划项目(ZK1437B010)
关键词 虚假评论 时间序列 多尺度 主成分分析 聚类 fake review time series multi-scale Principal Component Analysis(PCA) clustering
  • 相关文献

参考文献7

二级参考文献50

  • 1柴立和.多尺度科学的研究进展[J].化学进展,2005,17(2):186-191. 被引量:24
  • 2徐宝祥,叶培华.知识表示的方法研究[J].情报科学,2007,25(5):690-694. 被引量:53
  • 3孙庆先,李茂堂,路京选,郭达志,方涛.地理空间数据的尺度问题及其研究进展[J].地理与地理信息科学,2007,23(4):53-56. 被引量:26
  • 4Jindal N, I.iu B. Review spare detection. Proceedings of the 16-th International Conference on World Wide Web,2007:1189-1190.
  • 5谭文堂,朱洪,葛斌等.垃圾评论自动过滤方法.同防科技大学学报,2012,34(5):153-157.
  • 6Feng S,Banerjee R,Chai Y J. Syntactic stylometry for deception detection. Proceedings of the 50^th Annual Meeting of the Association for Oomputational I.inguistics, 2012 : 8- 14.
  • 7Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. Proceedings of the 19^th ACM International Conference on Information and Knowledge Management. 2010 : 1549- 1552.
  • 8Lira E P,Nguyen V A,Jindal N,et ag. Detecting product review spammers using rating behaviors. Proceedings of the 19^th ACM International Con{erence on Information and Knowledge Man agement, New York, USA : 2010.
  • 9Wang G, Xie S H, Liu B, et al. Identify online store review spammers via social review graph. ACM Transactions on Intelligent Systems and Technology(TIST) ,2012,3(4).
  • 10Xie S H, Wang G, Lin S Y, et al. Review spam detection via temporal pattern discovery. Proceedings of the 18^th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2012: 823-831.

共引文献104

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部