期刊文献+

基于时间依赖的改进样本熵分析股票时间序列

Analysis of Stock Time Series Based on Time Dependent Modified Sample Entropy
下载PDF
导出
摘要 样本熵是一个度量时间序列复杂度的非线性方法,广泛应用于各领域。然而,研究表明熵值的大小并不总是和时间序列的复杂性相关。为了解决这个问题,提出了多尺度熵,用来度量不同尺度下的时间序列的复杂度。但是,考虑到这种方法并没有解决样本熵在度量时间序列复杂度的问题,提出了基于时间依赖的改进样本熵,并将其用在股票收盘价和成交量时间序列上,研究它们对应的复杂度关系。同时,结合多尺度的方法,衡量不同尺度下股票收盘价时间序列和成交量时间序列的复杂性。实验结果表明,从收盘价时间序列和成交量时间序列的复杂度变化上能够揭示一定的股票的发展规律。另外,收盘价序列在不同的尺度上能够保持一致性,而成交量序列在不同的尺度上熵值变化则有不同的趋势,且股票类型越接近,熵值变化曲线也越接近。 Sample entropy is a nonlinear method to measure the complexity of time series and widely applied in various fields.However,studies have shown that the entropy is not always related to the complexity of time series.To solve this problem,multi-scale entropy is proposed to measure the complexity of time series over different scales.However,considering that this method does not solve the problem of sample entropy in measuring the complexity of time series,a modified sample entropy based on time dependent is proposed and applied in the stock closing price and volume time series to study their corresponding complexity relations.At the same time,combined with multi-scale method,the complexity of closing time series and volume time series is measured over different scales.The experiment shows that the complexity of the closing price time series and volume time series can reveal a certain rule of stock development.In addition,the closing price sequence can maintain consistency on different scales,while the entropy value changes of the volume sequence at different scales have different trends,and the closer the stock type is,the closer the entropy change curve is.
作者 于文静 余洁 徐凌宇 YU Wen-jing;YU Jie;XU Ling-yu(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
出处 《计算机技术与发展》 2019年第3期60-63,共4页 Computer Technology and Development
基金 科技部重点研发计划(2016YFC1401902)
关键词 样本熵 时间依赖 多尺度熵 股票时间序列 sample entropy time dependent multi-scale entropy stock time series
  • 相关文献

参考文献6

二级参考文献73

  • 1李庆民,王冠,徐国政,钱家骊.高压断路器振动信号的指数衰减振荡波建模方法[J].高压电器,2004,40(3):177-179. 被引量:14
  • 2赵国庆,魏军.基于信息传播的混合GARCH模型[J].统计研究,2006,23(8):52-56. 被引量:5
  • 3雷雄国,曾以成,李凌.基于近似熵的语音端点检测[J].声学技术,2007,26(1):121-125. 被引量:11
  • 4张旭.基于表面肌电信号的人体动作识别与交互[D].合肥.中国科技大学,2010:9-10.
  • 5Asur S, Huberman BA, Szab6 G, Wang C. Trends in social media: Persistence and decay. In: Adamic LA, Baeza-Yates RA, Counts S, eds. Proc. of the 5th Int'l AAAI Conf. on Weblogs and Social Media. Menlo Park: The AAAI Press, 2011. 434-437.
  • 6Wang CX, Guan XH, Qin T, Li W. Who are active? An in-depth measurement on user activity characteristics in sina microblogging In: Proc. of the GLOBECOM. Piscataway: IEEE, 2012. 2083-2088. [doi: 10.1109/GLOCOM.2012.6503423].
  • 7Romero DM, Galuba W, Asur S, Huberman BA. Influence and passivity in social media. In: Proc. of the 20th Int'l Conf. Companion on World Wide Web. New York: ACM Press, 2011. 113-114. [doi: 10.1145/1963192.1963250].
  • 8Cha M, Haddadi H, Benevenuto F, Gummadi KP. Measuring user influence in Twitter: The million follower fallacy. In: Proc. of the 4th Int'l AAAI Conf. on Weblogs and Social Media. Menlo Park: AAAI Press, 2010. 10-17.
  • 9Wu S, Hofman JM, Mason WA, Watts DJ, Who says what to whom on Twitter. In: Srinivasan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, eds. Proc. of the 20th Int'l Conf. on World Wide Web. New York: ACM Press, 2011. 705-714. [doi: 10.1145/1963405.1963504].
  • 10Java A, Song X, Finin T, Tseng B. Why we Twitter: Understanding microblogging usage and communities. In: Proc. of the WebKDD/SNA-KDD. New York: ACM Press, 2007.56-65. [doi: 10.1145/1348549.1348556].

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部