期刊文献+

复杂场景轻量级SSD行人检测方法

A Lightweight SSD Pedestrian Detection Method Under Complex Scenes
下载PDF
导出
摘要 在高密度复杂场景下,传统目标检测算法由于缺乏对场景辅助信息的考虑,导致检测精度及性能难以满足实际需求。针对这一问题,本文提出了一种基于场景先验的轻量级SSD行人检测方法,根据地铁复杂场景中的行人先验特征及分布特点,重新设计SSD网络结构,添加小目标检测层,并调整生成候选框参数。实验表明:该方法在地铁场景下的行人平均检测精度(mAP)0.5,单帧检测耗时为9ms,相比经典SSD算法的行人检测精度和速度分别提升了6.2和43%,验证了所提方法的有效性。 Without the consideration of scene auxiliary information,the traditional algorithms of target detection have bad performance under high density complex scene.In order to solve this problem,we propose a lightweight SSD pedestrian detection method based on scene prior.Firstly,we analyze the prior and distribution characteristics of pedestrians in complex subway scenes.Then we redesign the structure of SSD network with extra small target detection layer.Meanwhile,we adjust the parameters of default box.After that,the model is optimized by training with large samples.Finally,the effectiveness of the proposed algorithm is verified by actual data experiments.The mean average precision(mAP)of pedestrian under subway scene is 90.5,and the single frame detection time is 9ms.The respective improving pedestrian detection precision and speed compared with classical SSD algorithm is 6.2 and 43%.
作者 李冉超 田青 齐自强 LI Ran-chao;TIAN Qing;QI Zi-qiang
出处 《信息技术与信息化》 2019年第2期58-62,共5页 Information Technology and Informatization
基金 国家重点研发计划(2017YFC0806005) 国家自然科学基金(61806008)
关键词 行人检测 神经网络 SSD pedestrian detection neural network SSD
  • 相关文献

参考文献8

二级参考文献68

  • 1胡峰,胡保生.并行计算技术与并行算法综述[J].电脑与信息技术,1999,7(5):47-59. 被引量:10
  • 2倪福川,贺贵明,龙磊.基于不变矩的人形“头肩像”识别技术[J].计算机工程,2005,31(10):174-176. 被引量:7
  • 3李强,张钹.一种基于图像灰度的快速匹配算法[J].软件学报,2006,17(2):216-222. 被引量:112
  • 4赖作镁,王敬儒,张启衡.背景运动补偿和假设检验的目标检测算法[J].光学精密工程,2007,15(1):112-116. 被引量:20
  • 5Turaga P, Chellappa R, Subrahmanian V S, Udrea O. Ma- chine recognition of human activities: a survey. IEEE Trans- actions on Circuits and Systems for Video Technology, 2008, 18(11): 1473-1488.
  • 6Gu J X, Ding X Q, Wang S J, Wu Y S. Action and gait recog- nition from recovered 3-D human joints. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(4): 1021-1033.
  • 7Yu G, Goussies N A, Yuan J S, Liu Z C. Fast action de- tection via discriminative random forest voting and top-Ksubvolume search. IEEE Transactions on Multimedia, 2011, 13(3): 507-517.
  • 8Ryoo M S, Aggarwal J K. Spatio-temporal relationship match: video structure comparison for recognition of com- plex human activities. In: Proceedings of the 12th Inter- national Conference on Computer Vision. Kyoto, Japan, Brazil: IEEE. 2009. 1593-1600.
  • 9Yuan J S, Liu Z C, Wu Y. Discriminative video pattern search for efficient action detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(9): 1728-1743.
  • 10Gall J, Yao A, Razavi N, Van Gool L, Lempitsky V. Hough forests for object detection, tracking, and action recogni- tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2188-2202.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部