期刊文献+

基于功率谱特征分析的立铣刀磨损实时监测方法 被引量:4

Research on Real-time Monitoring Method of Milling Cutter′s Wear Based on Power Spectrum Feature Analysis
下载PDF
导出
摘要 为了从拾取的振动信号中获取刀具的磨损状态,比较了ChebyshevⅠ型滤波器和Butterworth滤波器的振幅特性,对所获信号进行降噪滤波,并对滤波后的信号进行频谱分析。经分析发现,刀具在不同磨损阶段其基频信息和倍频特征有较大变化,利用自相关函数对其进行功率谱分析后发现,刀具急剧磨损时功率谱幅值特征较初期磨损和中期磨损阶段变化显著,可以作为刀具磨损程度的特征值指标,该特征值可用于在线监测刀具的磨损故障。 In order to obtain the wear state of the tool from the picked vibration signals,the amplitude characteristics of the Chebyshev type I filter and the Butterworth filter are compared in this paper. Noise reduction filtering is performed on the acquired signals and spectrum analysis is performed on the filtered signals.The analysis shows that the tool′s fundamental frequency information and frequency multiplication features have great changes in different wear stages.After using the autocorrelation function to analyze the power spectrum,it is found that the characteristics of the power spectrum amplitude change significantly compared with the initial wear and medium wear stages when the tool wears rapidly,and can be used as a characteristic value index of the cutting-tool wear.This characteristic value can be applied to the online monitoring of wear failures of the tool.
作者 王海宁 谢峰 李楠 韩凤华 Wang Haining;Xie Feng;Li Nan;Han Fenghua
出处 《工具技术》 2019年第3期123-126,共4页 Tool Engineering
关键词 刀具磨损 降噪滤波 自相关函数 功率谱 在线监测 cutting tool wear noise reduction filtering auto correlation function power spectrum online monitoring
  • 相关文献

参考文献6

二级参考文献74

共引文献33

同被引文献38

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部