期刊文献+

基于不同趋近律的滑模控制仿真实验

下载PDF
导出
摘要 滑模控制在非线性系统控制中具有广泛的应用。以二阶非线性系统的平衡控制为例,采用线性滑模面和不同趋近律设计滑模控制器。采用Simulink软件建立系统的仿真实验模型,采用滑模控制器进行二阶非线性系统的平衡控制,仿真结果验证了算法的有效性。 Sliding mode controllers are widely used in the control of nonlinear systems. Taking the balance control of the second-order nonlinear system as the example, the sliding mode controller is designed by using linear sliding surface and different reaching laws. The simulation experiment model is built by using Simulink software, and sliding mode controller is used to balance the second-order nonlinear system. The simulation results are given to demonstrate the effectiveness of the proposed method.
出处 《科技创新导报》 2018年第30期55-56,共2页 Science and Technology Innovation Herald
关键词 滑模控制 趋近律 非线性系统 MATLAB仿真 Sliding mode control Reaching law Nonlinear system MATLAB simulation
  • 相关文献

参考文献2

二级参考文献27

  • 1庄开宇,苏宏业,张克勤,褚健.Adaptive terminal sliding mode control for high-order nonlinear dynamic systems[J].Journal of Zhejiang University Science,2003,4(1):58-63. 被引量:11
  • 2夏常弟,李治.具有随机量测噪声的变结构控制[J].控制与决策,1994,9(3):226-229. 被引量:7
  • 3郑锋,程勉,高为炳.一类时滞线性系统的变结构控制[J].自动化学报,1995,21(2):221-226. 被引量:15
  • 4Slotine J J E, Li W. Applied nonlinear control[M]. NJ: Prentice-Hall Englewood Cliffs, 1991: 290-301.
  • 5Levant A. Universal single-input-single-output(SISO) sliding-mode controllers with finite-time convergence[J]. IEEE Trans on Automatic Control, 2001, 46(9): 1447-1451.
  • 6Laghrouche S, Plestan F, Glumineau A. Higher order sliding mode control based on integral sliding mode[J]. Automatica, 2007, 43(3): 531-537.
  • 7Defoort M, Floquet T, Kokosy A, et al. A novel higher order sliding mode control scheme[J]. Systems & Control Letters, 2009, 58(2): 102-108.
  • 8Siraramirez H. On the dynamic sliding mode control of nonlinear systems[J]. Int J of Control, 1993, 57(5): 1039-1061.
  • 9Yu S H, Yu X H, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964.
  • 10Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems[J]. IEEE Trans on Automatic Control, 2012, 57(8): 2106-2110.

共引文献653

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部