摘要
提出一种基于三比值特征量与改进鸡群算法优化支持向量机变压器故障诊断方法。以油中溶解气体(DGA)三比值作为特征量,利用改进鸡群算法对支持向量机参数进行优化,从而构建基于SVM的变压器故障诊断模型。基于国内117组变压器故障数据的故障诊断实例表明,以三比值为特征量的ICSO-SVM的诊断准确率高于IEC三比值法、标准SVM法、PSO-SVM和以DGA全数据为特征量的ICSO-SVM,证明了本文所提方法能提高变压器故障诊断准确率。
A transformer fault diagnosis method based on the three DGA ratios and chicken swarm optimization (ICSO)support vector machine (SVM) is proposed. The DGA three ratiosis used as the feature. Then, the improvedchicken swarm optimization algorithmis used to optimize the parameters of SVM. Finally,a transformer fault diagnosis model based on SVM is constructed.The resultbased on 117 sets of transformer fault data in China shows that the accuracy of the ICSO-SVM with the three ratiosas the feature is higher than that of the IEC three-ratio method, standard SVM, PSO-SVM,and ICSO-SVM with DGA full data as the feature.It is proved that the proposed method can improve the accuracy of transformer fault diagnosis.
出处
《科技创新导报》
2018年第29期5-7,共3页
Science and Technology Innovation Herald
关键词
变压器
故障诊断
支持向量机
鸡群算法
Power transformer
Fault diagnosis
Support vector machine
Chicken swarmoptimization algorithm