摘要
针对已有的以图搜图技术中自动化和智能化水平低、缺乏深度学习、难以获取精确的检索结果、检索技术存储空间消耗大、检索速度慢且难以满足大数据时代的图像检索需求等问题,提出了一种基于Faster RCNNH(Faster RCNN Hash)的多任务分层图像检索方法。首先利用选择性检索网络在特征图上进行逻辑回归,得到图像中各感兴趣区域的概率向量,在此基础上结合紧凑量化网络对其进行编码,得到图像紧凑量化哈希码;其次利用再次筛选网络获取各感兴趣区域中响应最大的区域感知语义特征;接着针对每个感兴趣区域,基于量化哈希h矩阵的精检索策略来对图像进行快速比对;最后选出与查询图像中的对应感兴趣区域最相似的图像。提出的多任务学习方法不仅能同时得到图像紧凑量化哈希码和区域感知语义特征,还能有效去除图像背景和其他对象信息的干扰。实验结果表明:所提方法能实现端到端的训练,自动选出更高质量的感兴趣区域特征,提高了大规模图像检索的自动化和智能化水平,其检索精度(0.9478)与检索速度(0.306s)均明显优于现有的大规模图像检索技术。
Aiming at the problems of low-level automation and intelligence,lack of deep learning,being difficult to obtain high retrieval accuracy,large storage space,slow retrieval speed and hardly meeting the search requirements of big data era for the existing search technologies,this paper proposed a multitask hierarchical image retrieval technology based on faster RCNNH(Faster RCNN Hash).Firstly,the logical regression is performed on the feature map by using the selective retrieval network to obtain the probability vectors of each region of interest in the image.On this basis,the compact quantization network is combined to encode the probability vector and obtain the compact and quantitative hash of the image.Secondly,the re-screening network is utilized to obtain the region-aware semantic features of each region of interest.Then,a precise search strategy based on quantitative hashing matrix is applied into each region of interest to compare the images fast.Finally,the image that is most similar to the corresponding region of interest in the query ima- ge is selected.Meanwhile,the proposed multitask learning method not only can simultaneously obtain compact and quantized hash codes and region-aware semantic features,but also can effectively remove the interference of the background and other objects.The experimental results show that the proposed method can achieve end-to-end training,and the network can automatically select the features with higher quality of the region of interest,thereby improving the automation and intelligence of large-scale image retrieval. The retrieval accuracy (0.9478) and search speed (0.306 s) of the proposed method are both significantly better than the existing large-scale image search technologies.
作者
何霞
汤一平
王丽冉
陈朋
袁公萍
HE Xia;TANG Yi-ping;WANG Li-ran;CHEN Peng;YUAN Gong-ping(School of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《计算机科学》
CSCD
北大核心
2019年第3期303-313,共11页
Computer Science
基金
国家自然科学基金项目(61070134
61379078)资助