期刊文献+

基于笔画角度变换和宽度特征的自然场景文本检测 被引量:4

Text detection based on stroke angle conversion and stroke width features in natural scene
下载PDF
导出
摘要 针对光照不均和背景复杂度所导致的自然场景文本检测中文本的漏检和错检现象,提出一种基于笔画角度变换和宽度特征的自然场景文本检测方法。分析发现与非文本相比,文本具有较稳定的笔画角度变换次数和笔画宽度,针对这两个特性提出笔画外边界优劣角变换次数和增强笔画支持像素面积比两种特征。前者分段统计笔画外轮廓角度变换次数;后者计算笔画宽度稳定区域在笔画总面积的占比,用来分别反映笔画角度和宽度变化稳定特性。为降低文本漏检率,采用多通道最大稳定极值区域(maximally stable extremal regions,MSER)检测,合并所有候选区域,提取候选区域的笔画特征和纹理特征,利用支持向量机完成文本和非文本区域分类。在ICDAR2015数据库上,算法的精确率和召回率分别达到79. 3%和72. 8%,并在一定程度上解决了光照不均和复杂背景的问题。 In order to reduce the missing detection and misclassification of text caused by uneven illumination and background complexity in text detection of natural scenes,this paper presented a natural scene text detection method based on stroke angle transformation and width features.Compared to non-text,the text has a more stable performance of stroke outline angle conversion times and stroke width.Therefore,this paper proposed methods of extracting the number of transformations of the outer corner of the stroke and the enhancement of the pixel area ratio of the stroke support.In order to extract the characteristics of angular conversion,it used the method of outer contour segmentation to calculate the number of conversion times.In order to extract the strokes width characteristics,it calculated the proportion of the width stable area in the total strokes area.To reduce rate of the text missing detection,it used multi-channel MSER to detect text candidate area.Candidate areas in all channels were merged to extract the stroke and texture features.It also adopted support vector machines combined with features to classify text and non-text.The simulations show that the accuracy and recall rate of the algorithm were 79.3%and 72.8%in the ICDAR2015 database,respectively.Moreover,it solves the problem of uneven illumination and complex background to some extent.
作者 陈硕 郑建彬 詹恩奇 汪阳 Chen Shuo;Zheng Jianbin;Zhan Enqi;Wang Yang(College of Information Engineering,Wuhan University of Technology,Wuhan 430070,China;Key Laboratory of Fiber Optic Sensing Technology&Information Processing for Ministry of Education,Wuhan 430070,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第4期1270-1274,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61303028)
关键词 自然场景 文本检测 笔画特征 natural scene text detection stroke feature
  • 相关文献

参考文献1

二级参考文献98

  • 1Tsai S S, Chen H, Chen D, Schroth G, Grzeszczuk R, Girod B. Mobile Yingying ZHU et al. Scene text detection and recognition: recent advances and future trends visual search on printed documents using text and low bit-rate features. In: Proceedings of the 18th IEEE International Conference on Image Processing. 2011, 2601-2604.
  • 2Barber D B, Redding J D, McLain T W, Beard R W, Taylor CN. Vision-based target geo-location using a fixed-wing miniature air vehi?cle. Journal of Intelligent and Robotic Systems, 2006, 47(4): 361-382.
  • 3Kisacanin B, Pavlovic V, Huang T S. Real-time vision for human?computer interaction. Springer Science and Business Media, 2005.
  • 4DeSouza G N, Kak A C. Vision for mobile robot navigation: a sur?vey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(2): 237-267.
  • 5Ham Y K, Kang M S, Chung H K, Park R H, Park G T. Recognition of raised characters for automatic classification of rubber tires. Optical Engineering. 1995, 34(1): 102-109.
  • 6Yao C, Zhang X, Bai X, Liu W, Tu Z. Rotation-invariant features for multi-oriented text detection in natural images. PloS one, 2013, 8(8): e70173.
  • 7Yao C, Bai X, Shi B, Liu W. Strokelets: A learned multi-scale represen?tation for scene text recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 4042-4049.
  • 8Chen X, Yuille A L. Detecting and reading text in natural scenes. In: Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 2.
  • 9Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform. In: Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2963-2970.
  • 10Neumann L, Matas J. A method for text localization and recognition in real-world images. Lecture Notes in Computer Science, 2011, 6494, 770-783.

共引文献20

同被引文献24

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部