摘要
为了提高对不同运动状态下人体动态特征的分析能力,提出了一种基于融合型深度学习的人体动态特征提取算法。采用图像亮点流形标注方法进行人体图像的动态特征采样,对动态图像采用RGB颜色特征分解方法进行灰度像素二值化拟合处理,采用多尺度小波分解方法实现行人的差异性特征提取,对所提取的人体动态特征量采用深度学习方法进行自适应分类处理,使用融合型卷积神经网络对分类后的动态特征量进行超分辨融合,实现了人体动态特征的优化提取。仿真结果表明,采用该方法进行人体动态特征提取的超分辨性较好,在时间开销和图像识别精度方面具有优越性。
In order to improve the ability of dynamic feature analysis of human body in different motion states,a human body dynamic feature extraction algorithm based on fusion depth learning is proposed.The dynamic feature sampling of human body image is carried out by using the image highlight manifold annotation method,and the gray pixel binary fitting processing is carried out by using the RGB color feature decomposition method for the dynamic image.The multi-scale wavelet decomposition method is used to extract the pedestrian differential features,and the depth learning method is used to self-adaptively classify the extracted human dynamic features.The fusion convolution neural network is used to perform super-resolution fusion of the classification dynamic feature to realize the optimal extraction of the human body dynamic feature.The simulation results show that this method has good super-resolution in extracting human dynamic features and has advantages in execution time overhead and image recognition accuracy.
作者
于海鹏
王闻达
YU Haipeng;WANG Wenda(College of Computer,Henan University of Engineering,Zhengzhou 451191,China;School of Telecommunications Engineering,Xidian University,Xi′an 710100,China)
出处
《河南工程学院学报(自然科学版)》
2019年第1期71-76,共6页
Journal of Henan University of Engineering:Natural Science Edition
基金
河南省高等学校重点科研项目(19A520017)
关键词
深度学习
人体图像
动态特征提取
小波分解
depth learning
human body image
dynamic feature extraction
wavelet decomposition