期刊文献+

不含3K_1和K_1+C_4为导出子图的图色数上界

Upper Bound of Chromatic Number for {3K_1,K_1+C_4}-free Graphs
下载PDF
导出
摘要 在完美图的基础上,Gyárfás提出了用f (ω)表示图的色数上界的概念。通过对不含3K_1和K_1+C_4为导出子图的图结构进行分析,得到了该类图色数的关于团数线性函数表达式的上界。此结果改进了Choudum等关于此类图的结论。 Gyárfás improves the conception of perfect graphs,and gives the upper bound with f (ω) on chromatic number of graphs. By analyzing of the structural characterization of{3K1,K1 + C4}-free graphs,the upper bound,with linear function in term of clique number,on chromatic number of { 3K1,K1 + C4}-free graphs is obtained. This result improves Choudum etl.'s result for these graphs.
作者 王晓 WANG Xiao(College of Mathematics and Computer Application,Shangluo University,Shangluo 726000)
出处 《计算机与数字工程》 2019年第3期513-515,共3页 Computer & Digital Engineering
基金 陕西省教育厅自然科学专项基金项目(编号:16JK1243)资助
关键词 色数 导出子图 团数 chromatic number induced subgraph clique number
  • 相关文献

参考文献2

二级参考文献21

  • 1BONDY J A, MURTY U S R. Graph Theory With Applications [,M?. Macmillan, London and Elsevier, New York, 1976.
  • 2Gyarfds. A. Problems from the world surrounding per- fect graphs[J]. Zastow. Mat. , 1987,19:413-441.
  • 3Wagon, S. A bound on the chromatic number of graphs without certain induced subgraphs[J]. J. of Combin. Theory, Series B. , 1980,29 : 345-346.
  • 4Hoang C. T. , McDiarmid C. On the divisibility of graphs[,J]. Discrete Math, 2002,242 : 145-156.
  • 5Randerath, B., Schiermeyer, I. A note on Brooks Theorem for triangle-free graphs [J]. Australas. J. Comb. ,2002,26:3-9.
  • 6Randerath, B. , Schiermeyer, I. Vertex coloring and forbidden subgraphs - a surveyFJ]. Grpahs Combin, 2004,20: 1-40.
  • 7Duan F. , Wu B. Y. On chromatic number of graphs without certain induced subgraphs[J]. Ars combinato- ria,2011(7) :33-44.
  • 8Brandt, S. Triangle-free graphs and forbidden sub- graphs[J]. Discrete Apply Math, 2002,120 : Z5-33.
  • 9Erdos, P. Graph theory and probability[J]. Canad. J. Math. ,1959,11:34-38.
  • 10Reed, B. ω, △ and Х[J]. Journal of Graph Theory, 1998,37(4) : 177-212.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部