期刊文献+

FCD大数据并行处理的动态任务调度算法 被引量:5

Dynamic task scheduling algorithm of parallel computing for FCD big data
下载PDF
导出
摘要 浮动车数据(floating car data, FCD)技术是大规模城市路网交通流实时采集的有效方法.城市交通的动态诱导和控制需要对海量FCD进行快速处理.鉴于此,提出了FCD并行计算的动态任务调度方法.针对FCD数据包计算时间的不确定性和动态性,根据计算节点的处理能力进行数据包的动态分割,在处理过程中,采用动态任务分配策略以实现计算节点的同步.该方法在龙芯国产大数据一体机平台上进行了实现,并采用现场FCD数据进行了实验验证,结果表明,该方法较轮询和Min-Min调度算法,显著地提高了并行处理的性能. FCD(floating car data)technique is new way of collecting real-time traffic flow from large-scale urban networks.It is necessary to implement rapid processing of FCD big data for the dynamic guidance and control of urban traffic.A dynamic task scheduling algorithm is proposed for parallel computation of FCD.To address the uncertainty and dynamics of FCD package processing,FCD packages are partitioned dynamically.The load balance among computing nodes can be achieved using the dynamic task allocation strategy.The algorithm is developed on LoongSon big data integrated machine platform and evaluated using field FCD.The experimental results indicate that the proposed algorithm has significantly higher parallel processing performances compared to the polling scheduling algorithm and Min-Min scheduling algorithm.
作者 陈锋 张智 李琴剑 陈宇强 陈国良 CHEN Feng;ZHANG Zhi;LI Qinjian;CHEN Yuqiang;CHEN Guoliang(Department of Automation,University of Science and Technology of China,Hefei 230027,China;Anhui LoongSon Science and Technology Co.,Ltd,Hefei 230088,China;School of Computer Science and technology,University of Science and Technology of China,Hefei 230027,China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第9期718-722,共5页 JUSTC
基金 国家重点研发(973)计划(2017YFC0840206) 安徽省重大科技专项(17030901007)资助
关键词 浮动车数据 大数据 并行计算 动态任务划分 动态任务调度 floating car data big data parallel computing dynamic task partition dynamic task scheduling
  • 相关文献

参考文献2

二级参考文献18

  • 1王友良,叶柏龙.分布式系统中动态负载平衡的研究[J].科学技术与工程,2005,5(9):572-575. 被引量:12
  • 2唐克双,姚恩建.日本ITS开发和运用的实例——名古屋基于浮动车信息的P-DRGS简介[J].城市交通,2006,4(3):74-76. 被引量:11
  • 3何琨,赵勇,陈阳.分布式环境下多任务调度问题的分析与求解[J].系统工程理论与实践,2007,27(5):119-125. 被引量:12
  • 4Pfoser D, Tryfona N, Voisard A. Dynamic travel time maps-enabling efficient navigation[C]// 18th International Conference on Scientific and Statistical Database Management. Vienna: IEEE Press, 2006: 369-378.
  • 5Comert G, Cetin M. Queue length estimation from probe vehicle location and the impacts of sample size [J]. European Journal of Operational Research, 2009, 197(1): 196-202.
  • 6Eisenman S M, List G F. Using probe data m estimate OD matriees[C]//The 7th International IEEE Conference on Intelligent Transportation Systems. Washington: IEEE Press, 2004: 291-296.
  • 7Lu W, Wang W J, Kimita K, et al. Decreasing FCD processing delay by deploying distributed processing system[C]//6th International Conference on ITS Tele- communications. INSPEC, 2006: 206-209.
  • 8Zhang Z H, Jiang C J, Fang Y. Road situation modeling ard parallel algorithm implementation with FO3 based on principle curves [C]// Proceedings of the Eighth International Conference on High-Performance Computing in Asia-Padfie Region. Washington: IEEE Computer Society, 2005.6-11.
  • 9Stankovic J A. Stability and distributed scheduling algo- rithms. IEEE Transactions on Software Engineering, 1985, 11(10) :1141-1152.
  • 10Saxena S, Khan M Z, Singh R. Performance analysis in distributed system of dynamic load balancing using fuzzy logic. In: Proceedings of the IEEE 2012 Spring Corgress on Engineering and Technology, Xi' an, China,2012.1-5.

共引文献18

同被引文献65

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部