摘要
基于场景的非均匀校正依然是红外领域的一个研究热门。神经网络算法是一种较为典型的场景校正算法。本文主要针对神经网络算法本身不能校正光学引入的非均匀性问题,提出了新的改进算法,通过对神经网络输入层的预处理,消除图像的低频噪声,此外,为了消除预处理对图像对比度的影响,本文增加了神经网络的层数,使用双层神经网络对算法进行更新,从而消除了图像对比度下降的现象。实验结果表明,改进的神经网络算法能够有效的改善图像质量,消除图像中光学引入的非均匀性。
Scene-based non-uniformity correction is still a hot topic in the infrared field.A neural network algorithm is a classical scene-based non-uniformity correction algorithm.This article mainly introduced problems where the classical algorithm cannot correct an optical non-uniformity.We propose an improved algorithm based on the preprocessing layer to correct to the low-frequency noise.In order to eliminate the influence of the image contrast,we add a learning layer that can eliminate the image contrast drop phenomenon.The results of the experiment show that the new algorithm can effectively improve the image quality and eliminate non-uniformity introduced by the optics.
作者
李谦
杨波
粟宇路
樊佩琦
刘传明
苏俊波
LI Qian;YANG Bo;SU Yulu;FAN Peiqi;LIU Chuanming;SU Junbo(Kunming Institute of Physics,Kunming 650223,China)
出处
《红外技术》
CSCD
北大核心
2019年第3期251-255,共5页
Infrared Technology
关键词
非均匀性校正
光学非均匀性
直方图均衡化
non-uniformity correction
optical non-uniformity
histogram equalization