期刊文献+

基于BEMD-IPSO-SVM的扣件完损状态检测 被引量:4

BEMD-IPSO-SVM-based fasteners status detection
下载PDF
导出
摘要 扣件的完损状态关乎铁路系统的安危,而传统检测算法运算复杂且精度不足,为进一步提升检测性能,提出基于BEMD-IPSO-SVM的扣件完损状态检测算法。该算法首先对初始化的扣件图像进行二维经验模态分解,提取固有模态函数的频谱特征,通过改进粒子群算法优化支持向量机来实现检测分类,达到了简化运算,增强泛化性,提升识别准确度的目的。通过实验仿真得出平均检测准确率可达95.15%,证明该算法在扣件检测方面切实可行。 The damage status of the fastener is related to the safety of the railway system.However,the traditional detection algorithm is complex and inaccurate in calculation.To further improve the detection performance,a BEMD-IPSO-SVM-based fastener damage detection algorithm is proposed.The algorithm firstly performs BEMD on the initial fastener images,then extracts the frequency spectrum characteristics of the IMF,finally implements detection classification through the IPSO-SVM,which reaches the goal of simplifying calculations,enhancing generalization,and improving recognition accuracy.Through experimental simulation,the average detection accuracy rate can reach 95.15%,which proves that the algorithm is feasible in fastener detection.
作者 齐胜 陈光武 魏宗寿 刘射德 王登飞 QI Sheng;CHEN Guangwu;WEI Zongshou;LIU Shede;WANG Dengfei(Automatic Control Research Institute,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Key Laboratory of Traffic Information Engineering and Control,Lanzhou 730070,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2019年第3期780-787,共8页 Journal of Railway Science and Engineering
基金 甘肃省高等学校科研资助项目(2018C-11) 甘肃省国际合作重点研发计划(17YF1WA158) 甘肃省自然科学基金资助项目(18JR3RA107) 甘肃省科技计划资助项目(18CX3ZA604)
关键词 二维经验模态分解 改进粒子群算法 支持向量机 扣件检测 BEMD IPSO SVM detection of fastener
  • 相关文献

参考文献4

二级参考文献42

  • 1Irie B, Miyake S. Capability of three-layered perceptions//Proceedings of IEEE International Conference on Neural Networks. San Diego, 1988:641
  • 2Rumelhart D E, McClelland J L. Parallel Distributed Processing : Explorations in the Microstructure of Cognition. Cambridge: MIT Press, 1986
  • 3Kennedy J, Eberhart R. Particle swarm optimization//Proceedings of IEEE International Conference on Neural Networks. Australia: IEEE Service Center, 1995:1942
  • 4Angeline P J. Evolutionary optimization versus particle swarm optimization; philosophy and performance differences. Evol Program, 1998, 48(17): 1956
  • 5Shi Y, Eberhart R. Empirical study of particle swarm optimization// Proceeding of Congress on Computational Intelligence. Washington, 1999:1945
  • 6Angeline P. Using selection to improve particle optimization//Proceeding of IJ CNN. Washington, 1999:84
  • 7Suganthan P. Particle swarm optimizer with neighborhood operator// Proceeding of Congress on Evolutionary Computation. Piscataway, 1999:1958
  • 8Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization //Proceeding of the Congress on Evolutionary Computation. Seoul, 2001:101
  • 9Chang C G, Wang D W, Liu Y C, et al. Application of particle swarm optimization based BP neural network on engineering project risk evaluating//Third International Conference on Natural Computation (ICNC 2007). Haikou, 2007:750
  • 10UCI-MLR: University of California Irvine Machine Learning Repository [ DB/OL ]. California Irvine, Tex: University of California Irvine Libraries, 1987 [2007]. http://archive, ics. uci. edu/ml/index, html

共引文献84

同被引文献26

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部