期刊文献+

基于多子网复合复杂网络模型的物质扩散推荐算法 被引量:1

Mass Diffusion Recommendation Algorithm Based on Multi-Subnet Composited Complex Network Model
下载PDF
导出
摘要 融合社交网络的社会化推荐算法是目前推荐系统中普遍采用的方法。在现实的社交网络中,用户间存在多种关系,而每种关系对于推荐的影响是不同的,因此在推荐中单纯引入某一种社交关系必然影响推荐结果的准确率。本文基于多子网复合复杂网络模型,通过在用户-商品二部图上加载多关系社交网络,构建多关系复合网,提出了基于多关系复合网的物质扩散推荐算法。在真实的数据集Epinions和FilmTrust上的实验结果表明,加入两种社交关系的推荐算法比加入一种社交关系的推荐算法及传统的物质扩散算法在推荐准确率方面有显著提高。 Social recommendation algorithm based on social network is a popular method in recommendation system at present. However, there are many relationships among users in real social networks, and each relationship has different effects on recommendation. Therefore, the introduction of a social relationship in recommendation will inevitably affect the accuracy of recommendation results. In this paper, based on the multi-subnet composited complex network model, a multi-relationship composited network is constructed on the user-item bipartite graph, and a mass diffusion recommendation algorithm based on multi-relationship composited network is proposed. The experimental results on the real datasets Epinions and FilmTrust show that the recommendation algorithm with two kinds of social relationships is better than the recommendation algorithm with one kind of social relationship and traditional mass diffusion algorithm in the accuracy of recommendation.
作者 周双 宾晟 邵峰晶 孙更新 ZHOU Shuang;BIN Sheng;SHAO Fengjing;SUN Gengxin(School of data science and software engineering, Qingdao University, Qingdao 266071, China)
出处 《复杂系统与复杂性科学》 EI CSCD 2018年第4期77-84,共8页 Complex Systems and Complexity Science
基金 山东省自然基金面上项目(ZR2017MG011) 教育部人文社会科学研究青年项目(15YJC860001) 山东省社会科学规划项目(17CHLJ16)
关键词 多子网复合复杂网络 物质扩散算法 多关系社交网络 推荐算法 multi-subnet composited complex network mass diffusion algorithm multi-relationship social network recommendation algorithm
  • 相关文献

参考文献10

二级参考文献110

  • 1Fang Jinqing.Theoretical research progress in complexity of complex dynamical networks[J].Progress in Natural Science:Materials International,2007,17(7):761-774. 被引量:18
  • 2倪茂树,林鸿飞.基于关联规则和极性分析的商品评论挖掘[C]//第三届全国信息检索与内容安全学术会议,2007:635-642.
  • 3SCHAFER J B,KONSTAN J A,RIED J. E-commerce recommendation applications[J] .Data Mining and Knowledge Discovery,2001,5(1/2): 115-153.
  • 4SARWAR B,KARYPIS G,KONSTAN J,et al. Analysis of recommendation algorithms for e-commerce[C] // ACM Conference on Electronic Commerce. New York: ACM,2000: 158-167.
  • 5HERLOCKER L J,KONSTAN A J,RIEDL T J.Empirical analysis of design choices in neighborhood-based collaborative filtering algorithms[J] .Information Retrieval,2002,5(4): 287-310.
  • 6BREESE J,HECHERMAN D,KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[EB/OL].[2010-10-05]. http://www.cs.pitt.edu/~mrotaru/comp/rs/Breese%20UAI%201998.pdf.
  • 7HERLOCKER J L,KONSTAN J A,BORCHERS A,et al. An algorithmic framework for performing collaborative filtering[C] // Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM,1999: 230-237.
  • 8WANG JUN,de VRIES A P,REINDERS M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C] // Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM,2006: 501-508.
  • 9HERLOCKER L J,KONSTAN A J,TERVEEN G L,et al.Evaluating collaborative filtering recommender systems[J] .ACM Transactions on Information Systems,2004,22(1): 5-53.
  • 10KARYPIS G. Evaluation of item-based top-n recommendation algorithms[C] // Proceedings of the 10th International Conference on Information and Knowledge Management. New York: ACM,2001: 247-254.

共引文献380

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部