期刊文献+

基于EEMD信号处理的滚动轴承故障诊断 被引量:2

下载PDF
导出
摘要 针对滚动轴承故障振动信号具有非平稳、非线性特征以及提取特征困难等问题,提出一种基于集合经验模态分解的样本熵的特征向量提取方法,并将提取到的特征向量输入到支持向量机中进行故障识别。结果表明,所选方法在诊断正确率上大大提高,突出了该方法的优越性。
机构地区 西安工业大学
出处 《技术与市场》 2019年第3期121-121,123,共2页 Technology and Market
  • 相关文献

参考文献1

二级参考文献18

  • 1YANG Hongyu, MATHEW J, MA L. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processipg, 2005, 19(2): 341-356.
  • 2LEI Yaguo, HE Zhengjia, ZI Yangyang, et al. Fault diagnosis of rotating machinery based on multiple ANF1Scombination with GAS[J]. Mechanical Systems and Signal Processing, 2007, 21(5). 2280-2294.
  • 3YU Lei, LIU Huan. Toward integrating feature selection algorithms for classification and clustering[J]. Transactions Knowledge Data Engineering, 2005, 17(4): 491-502.
  • 4DY J G, BRODLEY C E. Feature selection for unsupervised learning[J]. Journal of Machine Learning Research, 2004, 5(12): 845-889.
  • 5KOHAVI R, JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1/2) : 273-324.
  • 6BISHOP C M. Neural networks for pattern recognition[M]. Clarendon: Oxford University Press, 1995.
  • 7HE Xiaofei, CAI Deng, NIYOGI P. Laplacian score for feature selection[C]// Advances in Neural Information Processing System. Cambridge, MA: MITPress, 2005: 149-256.
  • 8BELKIN M, NIYOGI E Laplacian eigenmaps and spectral techniques for embedding and ccustering[C]// Advances in Neural Information Processing Systems. Cambridge, MA: MITPress, 2001: 585-591.
  • 9JIANG Quansheng, JIA Minping, HU Jianzhong, et al. Machinery fault diagnosis using supervised manifold learning[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2301-231l.
  • 10HE Xiaofei , NIYOGI P. Locality preserving projections[C]// Advances in Neural Information Processing Systems. Cambridge, MA. MIT Press, 2003: 161-168.

共引文献23

同被引文献13

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部