摘要
随着电力系统的飞速发展,电力负荷数据的规模也愈加庞大,以往基于小规模数据的电力负荷预测算法可能无法容纳大量数据集。为改善预测模型的工程实用性,本文提出了一种新型的机器学习模型,该模型将卷积神经网络(CNN)与纵横交叉优化算法(CSO)结合起来,应用于短期负荷预测。从大规模的负荷数据中收集到横向相邻日和纵向的相似日负荷数据,设置横向预测和纵向预测的权值系数,再用CSO优化算法去找最优系数,得到最后的二维组合预测结果,并与其它机器学习算法比较。通过实验证明,模型可以快速有效地处理大规模的负荷数据,具有较强的泛化能力。
With the rapid development of power system,the scale of power load data is becoming larger and larger.In the past,power load forecasting algorithms based on small-scale data may not be able to accommodate large data sets.In order to improve the engineering practicability of the predictive model,a new machine learning model is proposed which combines the Convolutional Neural Network(CNN)with the Cross and Cross Optimization Algorithm(CSO)for short-term load forecasting.Collecting similar daily load data from horizontally adjacent days and verticals from large-scale load data,setting the weight coefficients of lateral prediction and longitudinal prediction,and then using CSO optimization algorithm to find the optimal coefficient to obtain the final two-dimensional combined prediction,the result is compared to other machine learning algorithms.Experiments show that the model can quickly process large-scale load data and has strong generalization ability.
作者
杨跞
钟力强
殷豪
YANG Luo;ZHONG Liqiang;YIN Hao(Guangdong University of Technology,Guangzhou 510006,China;Guangdong Electric Power Research Institute,Guangzhou 510030,China)
出处
《现代信息科技》
2019年第4期160-162,共3页
Modern Information Technology
基金
广东电网电力科学研究院科技项目:线路行走式机器人小型化轻型化及实用化技术及其在电网维护中的应用研究(项目编号:GDKJXM20173031)
关键词
大数据压缩
卷积神经网络
纵横交叉算法
组合预测
相似日负荷
large data compression
convolutional neural network
crossover algorithm
combination forecasting
similar daily load