摘要
将随机森林融合支持向量机(RF-SVM)模型引入个人信用评估问题中,利用随机森林的特征选择算法,对实验样本进行属性特征选择,将得到的结果作为输入变量构建模型,以获得更高的预测精度。通过对大量SVM分类模型研究,发现传统SVM模型中无法有效筛选预测指标。通过对实验样本实证研究,并验证该模型的预测结果可信度,将其与单独的全变量SVM模型结果比对,结果证明,该方法能获得较好的预测效果。
出处
《科技创业月刊》
2019年第1期145-147,共3页
Journal of Entrepreneurship in Science & Technology